Skip to main content

Enzyme Analysis

The Rationale and Use of Enzyme Assays in Assigning Function to Gene Nucleotide Sequences and the Procedures for the Assay of Three Enzymatic Functions Conserved in Mollicutes

  • Protocol
Book cover Mycoplasma Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 104))

Abstract

An issue of some biological currency pertains to the identification of the functional potential of cells as deduced from the nucleotide sequence of their genes. In effect, nucleotide sequences of genes assigned in some confidence to expressed proteins and function in one cell are taken, when found in the genomes of other cells, to be indicators of the presence of the same function. However, such comparisons have never been found to be perfectly identical. The level of dissimilarity often casts some doubt on the identification or functional assignment of genes. The assignment of enzymatic function by comparison of gene nucleotide sequences alone was recognized as questionable and, hence, only putative even by the first workers to sequence a genome completely (1,2). One of the problems in assigning gene sequences was characterized by these workers as being the result of low similarities between known sequences from other species and those being analyzed. The matches might be so low that they were not detectable as similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J.-F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, I. A., Small, K. V., Fraser, C. M., Smith, H. O., and Venter, J. C. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

    Article  PubMed  CAS  Google Scholar 

  2. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G., Kelley, J. M., Fritchman, J. L., Wiedman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback, T. R., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J.-F., Dougherty, B. A., Bott, K. F., Hu, P.-C., Lucier, T. S., Peterson, S. N., Smith, H. O., Hutchison, C. A., III, and Venter, J. C. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.

    Article  PubMed  CAS  Google Scholar 

  3. Tryon, V. V. and Pollack, J. D. (1984) Purine metabolism in Acholeplasma laidlawii B: Novel PPi-dependent nucleoside kinase activity. J. Bacteriol. 159, 265–270.

    PubMed  CAS  Google Scholar 

  4. Tryon, V. V., and Pollack, J. D. (1985) Distinctions in Mollicutes purine metabolism: pyrophosphate-dependent nucleoside kinase and dependence on guanylate salvage. Int. J. Syst. Bacteriol. 35, 497–501.

    Article  CAS  Google Scholar 

  5. DeSantis, D., Tryon, V. V., and Pollack, J. D. (1989) Metabolism of Mollicutes: the Embden-Meyerhof-Parnas pathway and the hexose monophosphate shunt. J. Gen. Microbiol. 135, 683–691.

    CAS  Google Scholar 

  6. Manolukas, J., Barile, M. F., Chandler, D. K. F., and Pollack, J. D. (1988) Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in Mollicutes. J. Gen. Microbiol. 134, 791–800.

    PubMed  CAS  Google Scholar 

  7. Petzel, J., McElwain, M. C., DeSantis, D., Manolukas, J., Williams, M. V., Hartman, P. A., Allison, M. J., and Pollack, J. D. (1989) Enzyme activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Arch. Microbiol. 152, 309–316.

    Article  PubMed  CAS  Google Scholar 

  8. Herrmann, R. personal communication

    Google Scholar 

  9. Cordwell, S., D., Basseal, J., Pollack, J. D., and Humphery-Smith, I. (1997) Malate/lactate dehydrogenase in Mollicutes: evidence for a multienzyme protein. Gene, 195, 113–120.

    Article  PubMed  CAS  Google Scholar 

  10. Pollack, J. D., unpublished data

    Google Scholar 

  11. Pollack, J. D. (1995) Methods for testing metabolic activities in Mollicutes, in Molecular and Diagnostic Procedures in Mycoplasmology, vol. 1 (Razin, S. and Tully, J. G., eds.), Academic, San Diego, CA, pp. 277–286.

    Google Scholar 

  12. Passonneau, J. V. and O. H. Lowry. (1993) Enzymatic Analysis. Humana Press, Totowa, NJ, pp. 403.

    Google Scholar 

  13. Pollack, J. D., Banzon, J., Donelson, K., Tully, J. G., Davis, Jr., J. W., Hackett, K. J., Agbanyim, C., and Miles, R. (1996) Reduction of benzyl viologen distinguishes genera of the class Mollicutes. Int. J. Syst. Bacteriol. 46, 881–884.

    Article  PubMed  CAS  Google Scholar 

  14. Beaman, K. D. and Pollack, J. D. (1983) Synthesis of adenylate nucleotides by Mollicutes (mycoplasmas). J. Gen. Microbiol. 129, 3103–3110.

    PubMed  CAS  Google Scholar 

  15. Barber, M. D., Gamblin, S. J., Watson, H. C., and Littlefield, J. A. (1993) Site-directed mutagenesis of yeast phosphoglycerate kinase. FEBS Lett. 320, 193–197.

    Article  PubMed  CAS  Google Scholar 

  16. Chevalier, C., Saillard, C., and Bove, J. M. (1990) Organization and nucleotide sequences of the Spiroplasma citri genes for ribosomal protein S2, elongation factor Ts, spiralin, phosphofructokinase, pyruvate kinase, and an unidentified protein. J. Bacteriol. 172, 2693–2703.

    PubMed  CAS  Google Scholar 

  17. Sakai, H. and Ohta, T. (1993) Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. Eur. J. Biochem. 211, 851–859.

    Article  PubMed  CAS  Google Scholar 

  18. Bucher, T. and Pfleiderer, G. (1955) Pyruvate kinase from muscle. Methods Enzymol. 1, 435–440.

    Article  Google Scholar 

  19. Engel, P. C. (ed.). (1996) Enzymology. LabFax. Bios Scientific, Oxford, UK and Academic, San Diego, CA.

    Google Scholar 

  20. Scopes, R. K. (1993) Protein Purification, 3rd ed. Springer-Verlag, New York, pp. 380.

    Google Scholar 

  21. Suelter, C. H. (1985) A Practical Guide to Enzymology. John Wiley, New York, pp. 288.

    Google Scholar 

  22. Pollack, J. D., Razin, S., Pollack, M. E., and Cleverdon, R. C. (1965) Fractionation of Mycoplasma cells for enzyme localization. Life Sci. 4, 973–977.

    Article  PubMed  CAS  Google Scholar 

  23. Pollack, J. D., Williams, M. V., Banzon, J., Jones, M. A., Harvey, L., and Tully, J. G. (1996) Comparative metabolism of Mesoplasma, Entomoplasma, Mycoplasma, and Acholeplasma. Int. J. Syst. Bacteriol. 46, 885–890.

    Article  PubMed  CAS  Google Scholar 

  24. Rottem, S., Stein, O., and Razin, S. (1968) Reassembly of mycoplasma membranes disaggregated by detergents. Arch. Biochem. Biophys. 125, 46–56

    Article  PubMed  CAS  Google Scholar 

  25. Rottem, S. (1972) Isolation of mycoplasma membranes by digitonin. J. Bacteriol. 110, 699–705.

    PubMed  CAS  Google Scholar 

  26. Shirvan, M. H., Rottem, S., Neíeman, Z., and Bittman, R. (1982) Isolation of mycoplasma membranes by dicyclohexylcarbodiimide-induced lysis. J. Bacteriol. 149, 1124–1128.

    PubMed  CAS  Google Scholar 

  27. Razin, S. (1963) Osmotic lysis of mycoplasma. J. Gen. Microbiol. 33, 471–475.

    PubMed  CAS  Google Scholar 

  28. Razin, S. (1983) Cell lysis and isolation of membranes, in Methods in Mycoplasmology, vol. 1 (Razin, S. and Tully, J. G., eds.), Academic, New York, pp. 225–233.

    Google Scholar 

  29. Pollack, J. D., Somerson, N. L., and Senterfit, L. B. (1970) Isolation, characterization, and immunogenicity of Mycoplasma pneumoniae membranes. Infect. Immunol. 2, 326–339.

    CAS  Google Scholar 

  30. Breiter, D. R., Resnik, E., and Banaszak, L. J. (1994) Engineering the quatenary structure of an enzyme: Construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli. Protein Sci. 3, 2023–2032.

    Article  PubMed  CAS  Google Scholar 

  31. Wynne, S. A., Nicholls, D. J., Stevens, M. D., and Sundaram, T. K. (1996) Tetrameric malate dehydrogenase from a thermophilic Bacillus: cloning, sequence and over expression of the gene encoding the enzyme and isolation and characterization of the recombinant enzyme. Biochem. J. 317, 235–245.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pollack, J.D. (1998). Enzyme Analysis. In: Miles, R., Nicholas, R. (eds) Mycoplasma Protocols. Methods in Molecular Biology™, vol 104. Humana Press. https://doi.org/10.1385/0-89603-525-5:79

Download citation

  • DOI: https://doi.org/10.1385/0-89603-525-5:79

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-525-6

  • Online ISBN: 978-1-59259-269-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics