Luminometric Measurement of Malate and Glucose-6-Phosphate in Mammalian Tissue

  • Eberhard Jüngling
  • Helmut Kammermeier
  • Yvan Fischer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 102)


When using cells of mammmalian origin, the amount of biological material available for analytical purposes is often limited (e.g., ~l05 cells/sample, cor responding to few mg tissue). Since most intermediary metabolites are found in a concentratron range of ~50-500 μmol/g in a wide variety of tissues (see, e.g., ref. 1), only nanomolar or subnanomolar quantities can be expected to be present in small samples obtained from isolated cells or cell cultures. Such quantities are at best barely detectable by conventional spectrophotometric or fluorimetric procedures


Ammonium Sulfate Biological Matrix Flavin Mononucleotide Intermediary Metabolite Start Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williamson, D. H, and Brosnan, J T (1974) in Methoden der Enzymatischen Analyse, 3rd ed, vol. II (Bergmeyer, H. U, ed.), Verlag Chemie, Wemheim, pp 233l–2353.Google Scholar
  2. 2.
    Stanley, P E. (1971) Determination of subpicomole levels of NADH and FMN using bacterial luciferase and the liquid scintillation spectrometer. Anal Biochem 39, 441–453.PubMedCrossRefGoogle Scholar
  3. 3.
    Brolin, S. E., Agren, A, Wersall, J. P, and Hjerten, S (1978) in International Symposium on Analytical Appllcatrons of Blolummlescence and Chemllumlnes-cence (Schram, E. and Stanley, P, eds), State Printing and Publishing, Westlake Village, CA. pp. 109–121.Google Scholar
  4. 4.
    Agren, A, Beme, C., and Brolin, S. E. (1977) Photokmetic assay of pyruvate in islets of Langerhans using bacterial luciferase. Anal Bzochem 78, 229–234.CrossRefGoogle Scholar
  5. 5.
    Stanley, P. E (1978) in Methods in Enzymology, vol. LVII (Deluca, M A., Colowick, S. P, and Kaplan, N. O., eds.), Academic, London, pp. 181–188.Google Scholar
  6. 6.
    Hutton, J. C, Sener, A., and Malaisse, W. J (1978) in International Symposium on Analytical Applications of Biolumimescence and Chemduminescence (Schram, E. and Stanley, P, eds.), State Printing and Publishing, Westlake Village, CA, pp. 166–181Google Scholar
  7. 7.
    Fischer, Y., Rose, H., and Kammermeier, H. (1991) Highly insulin-responsive isolated rat heart muscle cells yielded by a modified isolation method. Life Scr 49, 1679–1688.CrossRefGoogle Scholar
  8. 8.
    Shryock, J. C., Rubto, R., and Berne, R. M. (1986) Extractton of ademne nucle-otides from cultured endothelial cells. Anal Blochem 159, 73–81CrossRefGoogle Scholar
  9. 9.
    Jungling, E., Timmerman, M, Aretz, A., Ionescu, I, Mertens, M., Lőken, C, Kammermeier, H., and Fischer, Y. (1996) Lummometric measurement of subnanomol amounts of key metabolites in extracts from isolated heart muscle cells. Anal Blochem. 239, 41–46.CrossRefGoogle Scholar
  10. 10.
    Fischer, Y., Bottcher, U., Eblenkamp, M., Thomas, J., Jungling, E, Rosen, P, and Kammermeter, H. (1997) Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardtomyocytes Bzochem. J. 32, 629–638.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Eberhard Jüngling
    • 1
  • Helmut Kammermeier
    • 1
  • Yvan Fischer
    • 1
  1. 1.Institute of PhysiologyMedical FacultyGermany

Personalised recommendations