Luminescence Facilitated Detection of Bioavailable Mercury in Natural Waters

  • Tamar Barkay
  • Ralph R Turner
  • Lasse D. Rasmussen
  • Carol A. Kelly
  • John W. M. Rudd
Part of the Methods in Molecular Biology™ book series (MIMB, volume 102)

Abstract

One of the major routes of human exposure to mercury is by the consumptron of contammated fish and shellfish. Mercury, in the form of methyl mercury (MM), accumulates in these biota by biomagnification through the aquatic food chain, to concentrations orders of magnitude higher than its levels in the water (1, 2). Dissolved MM is absorbed by unicellular organisms (2, 3) at the base of the food chain, and since MM is only very slowly eliminated from the animal body, its concentration increases with the trophic level. The amount of dissolved MM available to the base of the food chain is critical, and this amount is determined by the rates of MM formation and degradation and by factors that directly and indirectly affect these rates. Thus, the concentratton of bioavailable ionic mercury (Hg2+) affects not only the methylation rate, but also the rate of the Hg2+ reduction and volatilization, reactions that compete with methylation for the same substrate (4). Furthermore, Hg2+ is the inducer of a bacterial enzyme, organomercurial lyase, that degrades MM, as well as the reduction process (5). Measuring bioavailable Hg2+ is essential for calculating methylation and reduction rates in situ, a measurement needed for evaluating the potential for MM accumulation and thus risk to public health. Total mercury levels presently serve as the basis for regulating mercury exposure. Because the majority of mercury in the environment is in a harmless inert form, accurate measurements of bioavailable Hg2+ may provide a basis for more realistic regulatory criteria.

Keywords

Biomass Glycerol Mercury Assure Pyruvate 

References

  1. 1.
    Hudson, R. J. M, Gherini, S. A., Watras, J., and Porcella, D. B. (1994) Modeling the biogeochemical cycle of mercury in lakes: The mercury cycling model (MCM) and its application to the MTL study lakes, in Mercury Pollution Integrution and Synthesis (Watras, J. and Huckabee, J. W., eds.), Lewis Publishers, Boca Raton. FL pp. 473–523.Google Scholar
  2. 2.
    Watras, J. and Bloom N. S. (1992) Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 37, 1313–1318CrossRefGoogle Scholar
  3. 3.
    Mason, R. P., Reinfelder, J. R., and Morel, F. M. M. (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci. Technol 30, 1835–1845.CrossRefGoogle Scholar
  4. 4.
    Barkay, T, Turner, R., Saouter, E, and Horn, J (1992) mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3, 147–159CrossRefGoogle Scholar
  5. 5.
    Silver, S. and Phung L. T (1996) Bacterial heavy metal resistance. new surprises Annu. Rev. Microbiol. 50, 753–789.PubMedCrossRefGoogle Scholar
  6. 6.
    Bloom, N. S. (1989). Determination of picogram levels of methylmercury by aqueous phase ethylatlon, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection. Can J Fish Aquat. Sci. 46, 1131–1140.CrossRefGoogle Scholar
  7. 7.
    Fitzgerald, W. F. and Gill, G. A. (1979) Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detectlon applied to atmospheric analysis. Anal Chem 15, 1714–1720.CrossRefGoogle Scholar
  8. 8.
    Selifonova, O., Burlage, R., and Barkay, T. (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment Appl Environ Microbiol 59, 3083–3090PubMedGoogle Scholar
  9. 9.
    Tescione, L. and Belfort, G. (1993) Construction and Evaluation of a metal ion biosensor. Biotechnol Bioeng 42, 945–952.PubMedCrossRefGoogle Scholar
  10. 10.
    Condee, C. W. and Summers, A. O. (1992) A mer—lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superheliclty. J Bacteriol. 174, 8094–8101.PubMedGoogle Scholar
  11. 11.
    Virta, M., Lampinen, J, and Karp, M (1995) A luminescence-based mercury biosensor. Anal Chem. 67, 667–669.CrossRefGoogle Scholar
  12. 12.
    Summers, A. O. (1992) Untwist and Shout: a heavy metal-responsive transcriptional regulator. J. Bacteriol 174, 3097–3101.PubMedGoogle Scholar
  13. 13.
    Choi, S.-C., Chase, Jr. T., and Bartha, R. (1994) Metabolic pathways leadmg to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60, 4072–4077.PubMedGoogle Scholar
  14. 14.
    Rogowsky, P. M., Close T. J., Chimera, J. A., Skaw, J. J., and Kado, I. (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169, 5101–5112.PubMedGoogle Scholar
  15. 15.
    Sehfonova, O. V. and Barkey, T. (1994) Role of Na+ in transport of Hg2+ and induction of the Tn21 mer operon Appl Envrion Microbial 60, 3503–3507.Google Scholar
  16. 16.
    Gillman, M., and Turner, R. R. (1997) Effects of dissolved organic carbon and salinity on bioavadability of mercury. Appl Environ. Mcrobiol, in press.Google Scholar
  17. 17.
    Turner, R R., Bloom, N. S., and Rasmussen, L. D. Application of an indicator for the availability of mercury to microorganisms in natural water Chemosphere, in preparation.Google Scholar
  18. 18.
    Campbell, J. L., Richardson, C.C., and Studier, F. W. (1978) Genetic recombmanon and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Nat1 Acad. Sci USA 75, 2276–2280CrossRefGoogle Scholar
  19. 19.
    Hastings, J. W. and Weber, G. (1963) Total quantum flux of isotropic sources. J Opt. Soc Am 53, 1410–1415.CrossRefGoogle Scholar
  20. 20.
    Hastings, J. W, Potrikus, J., Gupta, S. C., Kurfürst, M., and Makemson, J. C (1985) Biochemistry and physiology of biolummescent bacteria Adv Microb Physiol. 26, 235–291PubMedCrossRefGoogle Scholar
  21. 21.
    Meighen, E A (1988) Enzymes and genes from the lux operons of biolummes-cent bacteria. Ann Rev Micorbiol 42, 151–176CrossRefGoogle Scholar
  22. 22.
    Larsen, I. L., Hartmann, N. A., and Wagner, J J. (1973) Estimating precision for the method of standard additions. Anal. Chem 45, 1511–1513CrossRefGoogle Scholar
  23. 23.
    Willard, H H, Merritt, L. L., Jr, and Dean, J. A (1958) Instrumental Methods of Analysis. D. Van Nostrand, Princeton, NJ.Google Scholar
  24. 24.
    O’Halloran, T. V. (1993) Transition metals in control of gene expression Science 261, 715–725PubMedCrossRefGoogle Scholar
  25. 25.
    Rasmussen, L. D., Turner, R. R, and Barkey, T. (1997) cell-density dependent sensitivity of a —bioassay Appl Environ Microbiol 63, 3291–3293.PubMedGoogle Scholar
  26. 26.
    Amyot, M., Mierle, G., Lean, D R. S., and McQueen, D. J. (1994) Sunlight-induced formation of dissolved gaseous mercury in lake waters Environ Sci Technol. 28, 2366–2371.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Tamar Barkay
    • 1
  • Ralph R Turner
    • 2
  • Lasse D. Rasmussen
    • 3
  • Carol A. Kelly
    • 4
  • John W. M. Rudd
    • 5
  1. 1.Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityRamat AvivIsrael
  2. 2.Frontier GeosciencesSeattle
  3. 3.Department of General MicrobiologyThe University of CopenhagenDenmark
  4. 4.Department of MicrobiologyUniversity of ManitobaWinnipegCanada
  5. 5.Freshwater InstituteWinnipegCanada

Personalised recommendations