A Stochastic PCR Approach for RNA Quantification in Multiple Samples

  • Adrian Puntschart
  • Michael Vogt
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 26)


When studying the effect of various treatments on gene expression in humans, one occasionally is faced with the problem of detecting small changes in transcript levels in minute tissue samples. In addition, interindividual variations can be quite large and may even be the major source of variation (1). Therefore, numerous samples usually have to be analyzed to detect such small variations in gene expression.


Polymerase Chain Reaction Polymerase Chain Reaction Product Polymerase Chain Reaction Reaction Polymerase Chain Reaction Cycle Polymerase Chain Reaction Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gundersen, H. J. G and Osterby, R. (1980) Optimizing sampling efficiency of stereological studies in biology: or ‘Do more less well!’ J. Microscopy 121, 65–73.Google Scholar
  2. 2.
    Gilliland, G, Perin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiesner, R. J., Ruegg, J. C, and Morano, I. (1992) Counting target molecules by exponential polymerase chain reaction: Copy number of mitochondrial DNA in rat tissues. Biochem. Biophys. Res. Comm. 183, 553–559.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang, A., Doyle, M. V., and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9721.CrossRefPubMedGoogle Scholar
  5. 5.
    Chelly, A., Montarras, D., Pinset, C., Berwald-Netter, Y., and Kaplan, I.-C. (1990) Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction: application to dystrophin mRNA in cultured myogenic and brain cells. Eur. J. Biochem. 187, 691–698.CrossRefPubMedGoogle Scholar
  6. 6.
    Ferre, F. (1993) Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods Applic. 2, 1–9.Google Scholar
  7. 7.
    Clementi, M., Menzo, S., Bagnarelli, P., Manzin, A., Valenza, A., and Varaldo, P. E. (1993) Quantitative PCR and RT-PCR in virology. PCR Methods Applic. 2, 191–196.Google Scholar
  8. 8.
    Reischl, U. and Kochanowski, B. (1995) Quantitative PCR. Mol. Biotech. 3, 55–71.CrossRefGoogle Scholar
  9. 9.
    Nedelman, J., Haegerty, P., and Lawrence, C. (1992) Quantitative PCR with internal controls. Comput. Applic. Biosci. 8, 65–70.Google Scholar
  10. 10.
    Becker-Andre, M. and Hahlbrok, K. (1989) Absolute mRNA quantification using the polymerase chain reaction (PCR): a novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acid Res. 17, 9437–9446.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy, L. D., Herzog, C. E., Rudick, J. B., Fojo, A. T., and Bates, S. E. (1990) Use of the polymerase chain reaction in the quantitation of mdr-1 gene expression. Biochemistry 29, 10,351–10,356.CrossRefPubMedGoogle Scholar
  12. 12.
    Noonan, K. E., Beck, C., Holzmayer, T. A., Chin, J. E., Wunder, J. S., Andrulis, I. l., Gazdar, A. F., Willman, C. L., Griffith, B., Von Hoff, D. D., and Roninson, I. B. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoof, T., Riordan, J. R., and Tuemmler, B. (1991) Quantitation of mRNA by the kinetic polymerase chain reaction assay: a tool for monitoring P-glycoprotein gene expression. Anal. Biochem. 196, 161–169.CrossRefPubMedGoogle Scholar
  14. 14.
    Chelly, J., Kaplan, J.-C., Maire, S., Gautron, S., and Kahn, A. (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature 333, 858–860.CrossRefPubMedGoogle Scholar
  15. 15.
    Rappole, D. A., Wang, A., Mark, D., and Werb, Z. (1989) Novel method for studying mRNA phenotypes in single or small numbers of cells. J. Cell. Biochem. 39, 1–11.CrossRefGoogle Scholar
  16. 16.
    Puntschart, A., Jostarndt, K., Hoppeler, H., and Billeter, R. (1994) An efficient polymerase chain reaction approach for the quantitation of multiple RNAs in human tissue samples. PCR Methods Applic. 3, 232–238.Google Scholar
  17. 17.
    Puntschart, A., Claassen, H., Jostarndt, K., Hoppeler, H., and Billeter, R. (1995) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am. J. Physiol. 269, C619–C625.PubMedGoogle Scholar
  18. 18.
    Yang, B., Yolken, R., and Viscidi, R. (1993) Quantitative polymerase chain reaction by monitoring enzymatic activity of DNA polymerase. Anal. Biochem. 208, 110–116.CrossRefPubMedGoogle Scholar
  19. 19.
    Ito, H., Miller, S. C., Akimoto, H., Torti, S. V., Taylor, A., Billingham, M. E., and Torti, F. M. (1991) Evaluation of mRNA levels by the polymerase chain reaction in small cardiac tissue samples. J. Mol. Cell. Cardiol. 23, 1117–1125.CrossRefPubMedGoogle Scholar
  20. 20.
    Dieffenbach, C. W. and Dveksler, G. S. (1995) PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  21. 21.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.CrossRefPubMedGoogle Scholar
  22. 22.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning. A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Adrian Puntschart
    • 1
  • Michael Vogt
    • 1
  1. 1.Department of AnatomyUniversity of BernSwitzerland

Personalised recommendations