SNAr-Based Cycloetherification Methodology: Application in the Synthesis of Heterodectic Macrocyclic Peptides with Endo Aryl-Aryl and Aryl-Alkyl Ether Bonds

  • Jieping Zhu
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)


The endo aryl-aryl and aryl-alkyl ether bonds exist in a number of biologically important macrocyclic natural products, such as vancomycin family glycopeptide antibiotics (1, 2, 3), antitumor series RA I-XIV (4), K-13 (5), OF4949 (6), piperazinomycin (7), cyclopeptide alkaloids (8,9), nonpeptidic diarylheptanoids (10), and so on. Peptidomimetics incorporating, such structural features, have also been designed and synthesized as potential inhibitors of ACE (11), anti-HIV agents (12) and so on. From the view point of synthesis design (15), macrocyclization via formation of aryl-aryl or aryl-alkyl ether bond is unique, since it tackles two difficult synthetic problems, i.e., formation of ether bond and ring closure by a single operation. Intramolecular Ullmann ether synthesis (16), oxidative coupling reaction (17), and so forth, have been employed for the synthesis of type A (Fig. 1) compounds. Ring closure via the formation of aryl-aryl (type A) (18) and aryl-alkyl ether bonds (type B, Fig. 1) (19) by way of intramolecualr SNAr reaction (20) will be the focus of this chapter.

Figure 1


Flash Chromatography Amino Alcohol Combine Organic Phasis Cyclopeptide Alkaloid Saturated Aqueous NH4Cl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williams, D. H. (1984) Structural studies on some antibiotics of the vancomycin group, and on the antibiotic-receptor complexes, by 1H NMR. Account Chem. Res. 17, 364–369.CrossRefGoogle Scholar
  2. 2.
    Nagarajan, R. (1993) Structure-activity relationships of vancomycin-type glyco-peptide antibiotics. J. Antiobiot. 46, 1181–1195.Google Scholar
  3. 3.
    Nagarajan, R. (1994) Glycopeptide Antibiotics Marcel Dekker, Inc., New York.Google Scholar
  4. 4.
    Itokwa, H. and Takeya, K. (1993) Antitumor substances from higher plants. Heterocycles 35, 1467–1501.CrossRefGoogle Scholar
  5. 5.
    Yasuzawa, T., Shirahata, K., and Sano, H. (1987) K-13, a novel inhibitor of angiotensin I converting enzyme produced by micromonospora halophytica subsp. exilisia II: structure determination. J. Antibiot. 40, 455–458.Google Scholar
  6. 6.
    Sano, S., Ikai, K., Katayama, K., Takesako, K., Nakamura, T., Obayashi, A., et al. (1986) OF4949, new inhibitor of aminopeptidase BII. Elucidation of structure. J. Antibiot. 39, 1685–1696.Google Scholar
  7. 7.
    Kaneda, M., Tamai, S., Nakamura, S., Hirata, T., Kushi, Y., and Suga, T. (1982). Piperazinomycin, a novel antifungal antibiotic II. Structure determination. J. Antibiot. 35, 1137–1140.Google Scholar
  8. 8.
    Joullié, M. J. and Nutt, R. E. (1985) Cyclopeptide alkaloids, in Alkaloids: Chemical and Biological Perspectives, vol. 3 (Pelletier, S. W., ed.), Wiley, New York, pp. 113–168.Google Scholar
  9. 9.
    Schmidt, U., Lieberknecht, A., and Haslinger, E. (1985) Peptide alkaloids, in The Alkaloids, vol. 9 (Brossi, A., ed.), Academic, New York, pp. 299–326.Google Scholar
  10. 10.
    Keserü, G. M. and Nogradi, M. (1995) The chemistry of natural diarylheptanoids, in Studies in Natural Products Chemistry, vol. 17 (Atta-ur-Rahman, ed.), Elsevier Science B. V., Amsterdam, pp. 357–394.Google Scholar
  11. 11.
    Hobbs, D. W. and Still, W. C. (1989) Synthesis of a thioether analog of the macrocyclic tripeptide K-13. Tetrahedron Lett. 30, 5405–5408.CrossRefGoogle Scholar
  12. 12.
    Podlogar, B. L., Farr, R. A., Friedrich, D., Tarnus, C, Huber, E. W., Cregge, R. J, et al. (1994) Design, synthesis, and conformational analysis of a novel macrocyclic HIV-protease inhibitor. J. Med. Chem. 37, 3684–3692.CrossRefGoogle Scholar
  13. 13.
    Chen, J. J., Coles, P. J., Arnold, L. O. D., Smith, R. A., MacDonald, I. D., Carrière, J., and Krantz, A. (1996) Synthesis and activity of conformationally-constrained macrocyclic norstatine-based inhibitor of HIV protease. Biorg. Med. Chem. Lett. 6, 435–438.CrossRefGoogle Scholar
  14. 14.
    Reid, R. C, March, D. R., Dooley, M. J., Bergman, D. A., Abbenante, G., Fairlie, D. P. (1996) A novel bicyclic enzyme inhibitor as a consensus peptidomimetics for the receptor-bound conformations of 12 peptic inhibitors of HIV-1 protease. J. Am. Chem. Soc. 118, 8511–8517 and references cited therein.CrossRefGoogle Scholar
  15. 15.
    Rama Rao, A. V., Gurjar, M. K., Reddy, L., and Rao, A. S. (1995) Studies directed toward the synthesis of vancomycin and related cyclic peptides. Chem. Rev. 95, 2135–2167.Google Scholar
  16. 16.
    Boger, D. L., Patane, M. A., and Zhou, J. (1994) Total synthesis of bouvardin, O-methylbouvardin, and O-methyl-N9-desmethylbouvardin. J. Am. Chem. Soc. 116, 8544–8556 and references cited therein.CrossRefGoogle Scholar
  17. 17.
    Nakamura, K., Nishiyama, S., and Yamamura, S. (1995) Synthetic studies on vancomycin: synthesis of seco-aglucovancomycins. Tetrahedron Lett. 36, 8621–8624 and references cited therein.CrossRefGoogle Scholar
  18. 18.
    For a highlight, see: Burgess, K., Lim, D., and Martinez, C. I. (1996) Nucleophilic aromatic substitution-a possible key step in total synthesis of vancomycin. Angew Chem. Int. Ed. Engl. 35, 1077–1078. For a short account, see: Zhu, J. (1997) SNAr based macrocyclization via biaryl ether formation: Application in natural product synthesis. Synlett 133–144. For more recent examples, see: Beugelmans, R., Bois-Choussy, M., Vergne, C, Bouillon, J. P., and Zhu, J. (1996) Synthesis of a model bicyclic C-O-D-O-E ring of vancomycin by a one-pot double SNAr based macrocyclization. J. Chem. Soc. Chem. Commun. 1029–1030; Vergne, C., Bois-Choussy, M., Beugelmans, R., and Zhu, J. (1997) Synthesis of four atropdiastereoismers of C-O-D-O-E ring of vancomycin by sequential cyclo-etherifications. Tetrahedron Lett. 38, 1403–1406; Bois-Choussy, M., Vergne, C., Neuville, L., Beugelmans, R., and Zhu, J. (1997) Synthesis of model tricyclic C-O-D-O-E-F-O-G ring of teicoplanin. Tetrahedron Lett. 38, 5795–5798.CrossRefGoogle Scholar
  19. 19.
    Zhu, J., Laib, T., Chastanet, J., and Beugelmans, R. (1996) A novel strategy towards the total synthesis of cyclopeptide alkaloids. Angew Chem. Int. Ed. Engl. 35, 2517–2519.CrossRefGoogle Scholar
  20. 20.
    For a recent book, see: Terrier, F. (1991) Nucleophilic Aromatic Displacement: The Role of the Nitro Group. VCH, New York.Google Scholar
  21. 21.
    Vergne, C., Bois-Choussy, M., Ouazzani, J., Beugelmans, R., and Zhu, J. (1997) Chemoenzymatic synthesis of enantiomerically pure 4-fluoro-3-nitro and 3-fluoro-4-nitro phenylalanine. Tetrahedron: Asymmetry 8, 391–398.CrossRefGoogle Scholar
  22. 22.
    Bois-Choussy, M., Beugelmans, R., Bouillon, J. P., and Zhu, J. (1995). Synthesis of a modified carboxylate-binding pocket of vancomycin. Tetrahedron Lett. 36, 4781–4784.Google Scholar
  23. 23.
    Bois-Choussy, M., Neuville, L., Beugelmans, R., and Zhu, J. (1996) Synthesis of modified carboxylate-binding pocket of vancomycin and teicoplanin. J. Org. Chem. 61, 9309–9322.CrossRefGoogle Scholar
  24. 24.
    Evans, D. A., Britton, T. C, Ellman, J. A., and Dorow, R. L. (1990) The asymmetric synthesis of α-amino acids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)-and (S)-α-azido carboxylic acids. J. Am. Chem. Soc. 112, 4011–4030.CrossRefGoogle Scholar
  25. 25.
    Penning, T. D., Djuric, S. W., Haack, R. A., Kalish, V. J., Miyashiro, J. M., Rowell, B. W., et al. (1990) Improved procedure for the reduction of N-acyloxazolidinones. Synthetic. Commun. 20, 307–312.CrossRefGoogle Scholar
  26. 26.
    Maiti, S. N., Singh, M. P., and Micetich, R. G. (1986) Facile conversion of azides to amines. Tetrahedron Lett. 27, 1423–1424.CrossRefGoogle Scholar
  27. 27.
    Beugelmans, R., Bigot, A., and Zhu, J. (1994) A novel synthesis of K-13. Tetrahedron Lett. 35, 7391–7394.CrossRefGoogle Scholar
  28. 28.
    Cohen, T., Dietz, A. G., and Miser, J. R. (1977) A simple preparation of phenols from diazonium ions via the generation and oxidation of aryl radicals by copper salts. J. Org. Chem. 42, 2053–2058.CrossRefGoogle Scholar
  29. 29.
    Evans, D. A., Ellman, J. A. (1989) The total synthesis of the isodityrosine-derived cyclic tripeptides OF4949-III and K-13. Determination of the absolute configuration of K-13. J. Am. Chem. Soc. 111, 1063–1072.CrossRefGoogle Scholar
  30. 30.
    Walsh, C. T. (1993) Vancomycin resistance: decoding the molecular logic. Science 261, 308–309.CrossRefGoogle Scholar
  31. 31.
    Beugelmans, R., Bourdet, S., Bigot, A., and Zhu, J. (1994) Reductive deprotection of aryl allyl ether with Pd[(PPh)3]4/NaBH4. Tetrahedron Lett. 35, 4349–4350.CrossRefGoogle Scholar
  32. 32.
    Beugelmans, R., Luc, N., Bois-Choussy, M., Chastanet, J., and Zhu, J. (1995). Palladium catalyzed reductive deprotection of alloc: transprotection and peptide bond formation. Tetrahedron Lett. 36, 3129–3132.CrossRefGoogle Scholar
  33. 33.
    Eliel, E. L. and Willen, S. H. (1994) Chirality in molecules devoid of chiral centres, in Stereochemistry of Organic Compounds. John Wiley, New York, pp. 1119–1190.Google Scholar
  34. 34.
    Beugelmans, R., Bigot, A., Bois-Choussy, M., and Zhu, J. (1996) A new approach to the synthesis of piperazinomycin and bouvardin: facile access to cycloisodityrosine via an intramolecular SNAr reaction. J. Org. Chem. 61, 771–774.CrossRefGoogle Scholar
  35. 35.
    Bigot, A., Beugelmans, R., and Zhu, J. (1997) A formal total synthesis of deoxybouvardin. Tetrahedron 53, 10,753–10,764.CrossRefGoogle Scholar
  36. 36.
    Koiso, Y., Li, Y., Iwasaki, S., Hanaoka, K., Kobayashi, T., Sonoda, R., et al. (1994) Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by ustilaginoidea virens. J. Antibiot. 47, 765–773.Google Scholar
  37. 37.
    Schmidt, U., Zäh, M., and Lieberknecht, A. (1991) The total synthesis of frangulanine. J. Chem. Soc, Chem. Commun. 1002–1004.Google Scholar
  38. 38.
    Lalancette, J. M., Frêche, A., Brindle, J. R., and Laliberté, M. (1972) Reductions of functional groups with sulfurated borohydrides. Application to steroidal ketones. Synthesis 526–532.Google Scholar
  39. 39.
    Doyle, M. P. and Bryker, W. J. (1979) Alkyl nitrite-metal halide deamination reactions 6: direct synthesis of arenediazonium tetrafluoroborate salts from aromatic amines, tert-butyl nitrite, and boron trifluoride etherate in anhydrous media. J. Org. Chem. 44, 1572–1574.CrossRefGoogle Scholar
  40. 40.
    Wassmundt, F. W. and Kiesman, W. F. (1995) Efficient catalyst of hydro-dediazoniations in dimethylformamide. J. Org. Chem. 60, 1713–1719.CrossRefGoogle Scholar
  41. 41.
    Pearson, R. G. (1987) Recent advances in the concept of hard and soft acids and bases. J. Chem. Edu. 64, 561–567.CrossRefGoogle Scholar
  42. 42.
    Doyle, M. P., Dellaria, J. F., Siegfried, B., and Bishop, S. W. (1977) Reductive deamination of arylamine by alkyl nitrites in N,N-dimethylformamide. A direct conversion of arylamines to aromatic hydrocarbons. J. Org. Chem. 42, 3494–3498.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Jieping Zhu
    • 1
  1. 1.Institute de Chimie des Substances NaturellesCNRSGif-sur-YvetteFrance

Personalised recommendations