Skip to main content

Formation of Highly Porous Polymeric Foams with Controlled Release Capability

A Phase-Separation Technique

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 18))

  • 3684 Accesses

Abstract

The success of many tissue engineering applications depends on a scaffold with the suitable physical properties, one of which might be a macroporous structure that allows cellular ingrowth. Such a porous implant further raises the possibility of delivering chemotactic or growth factors to influence the course of cell proliferation and differentiation in situ. The scaffolds can also be preseeded with cells to accelerate tissue growth or repair. Even in the absence of these payloads, they still provide the benefit of introducing the minimal amount of foreign material into the tissue. Furthermore, by making the porous scaffold, or foam, from biodegradable polymers, the regenerated tissue would be rid of any synthetic component, leading to a more functional biological equivalent, and eliminating concerns of long-term tissue compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ducheyne, P. (1985) Success of prosthetic devices fixed by ingrowth or surface interaction. Acta Orthop. Belg. 51, 144ā€“161.

    CASĀ  Google ScholarĀ 

  2. Schliephake, H., Neukam, F. W., and Klosa, D. (1991) Influence of pore dimensions on bone ingrowth into porous hydroxyapatite blocks used as bone graft substitutes. A histometric study. Int. J. Oral. Maxillofac. Surg. 20, 53ā€“58.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Eggli, P. S., Muller, W., and Schenk, R. K. (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin. Orthop. Rel. Res. 232, 127ā€“138.

    CASĀ  Google ScholarĀ 

  4. Collier, J. P., Mayor, M. B., Chae, J. C., Surprenant, V. A., Surprenant, H. P., and Dauphinais, L. A. (1988) Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials. Clin. Orthop. 235, 173ā€“180.

    Google ScholarĀ 

  5. Kadiyala, S., Lo, H., and Leong K. W. (1994) Biodegradable polymers as synthetic bone grafts, in Bone Formation and Repair (Brighton, C. T., Friedlander, G., Lane, J. M, eds.), AAOS, Boca Raton, FL.

    Google ScholarĀ 

  6. Lo, H., Kadiyala, S., Guggio, S. E., and Leong, K. W. (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J. Biomed. Mater. Res. 30, 475ā€“484.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Lo, H., Ponticiello, M. S., and Leong, K. W. (1996) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng. 1, 15ā€“28.

    ArticleĀ  Google ScholarĀ 

  8. Tanaka, H. and Nishi, T. (1987) Direct determination of the probability determination of concentration in polymer mixtures undergoing phase separation. Phys. Rev. Lett. 59, 692ā€“695.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Siggia, E. D. (1979) Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A20, 595ā€“605.

    Google ScholarĀ 

  10. Aubert, J. H. (1988) Interfacial tension of demixed polymer solutions. Polymer. 29, 118ā€“122

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Kadiyala, S., Lo, H., Ponticiello, M. S., Reddi, A. H., and Leong, K. W. (1996) Bone induction achieved by controlled release of BMP from PLA/Hydroxyapatite foams, in Transactions of the Fifth World Biomaterials Congress, Toronto, p. 289.

    Google ScholarĀ 

  12. Zaks, A. and Klibanov, A. M. (1984) Enzymatic catalysis in organic media at 100 degrees C. Science 1249ā€“1251.

    Google ScholarĀ 

  13. Zaks, A. and Klibanov, A. M. (1988) Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263, 3194ā€“3201.

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kadiyala, S., Lo, H., Leong, K.W. (1999). Formation of Highly Porous Polymeric Foams with Controlled Release Capability. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicineā„¢, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:57

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:57

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics