Skip to main content

Quantitative Measurement of the Biological Response of Cartilage to Mechanical Deformation

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

  • 3680 Accesses

Abstract

Cartilage functionality is defined, in part, in terms of the ability of the extracellular matrix to support a mechanical load. It has been shown that such mechanical loading can influence the biological response of the chondrocytes that are embedded in the extracellular matrix. Cultured tissue explants have served as useful models for studying such chondrocyte-mediated responses to mechanical deformation. The explant paradigm facilitates the control of mechanical and biological variables that may influence cellular behavior. This chapter presents the means for assessing the biologic response of cartilage to controlled mechanical stimuli, and lays the foundation to further explore the response of cartilage to mechanical stimuli in the presence of other factors, such as cytokines and growth factors (e.g., IL-1β, TGF-β, IGF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, C., Lai, W., and Mow, V. (1984) An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173.

    Article  CAS  Google Scholar 

  2. Kim, Y., Bonasser, L., and Grodzinsky, A. (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, 1055–1066.

    Article  CAS  Google Scholar 

  3. Kim, Y., Sah, R., Grodzinsky, A., Plaas, A., and Sandy, J. (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311, 1–12.

    Article  CAS  Google Scholar 

  4. Hall, A., Urban, J., and Gehl, K. (1989) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J. Orthop. Res. 9, 1–10.

    Article  Google Scholar 

  5. Maroudas, A. and Bannon, C. (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18, 619–632.

    CAS  Google Scholar 

  6. Maroudas, A., Mizrahi, J., Ben Haim, E.. and Ziv, I. (1987) Swelling pressure in cartilage. Adv. Microcirc. 13, 203–212.

    Google Scholar 

  7. Maroudas, A., Wachtel, E., Grushko, G., Katz, F., and Weinberg, P. (1991) The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim. Biophys. Acta 1073, 285–294.

    CAS  Google Scholar 

  8. Schneiderman, R., Keret, D., and Maroudas, A. (1986) Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study. J. Orthop. Res. 4, 393–408. I

    Article  CAS  Google Scholar 

  9. Quinn, T. (1996) Articular cartilage: matrix assembly, mediation of chondrocyte metabolism, and response to compression. PhD, MIT.

    Google Scholar 

  10. Oegema, T., Carpenter, B., and Thompson, R. (1984) Fluorometric determination of DNA in cartilage of various species. J. Orthop. Res. 1, 345–351.

    Article  CAS  Google Scholar 

  11. Farndale, R., Buttle, D., and Barrett, A. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 173–177.

    Google Scholar 

  12. Kim, Y., Sah, R., Doong, J., and Grodzinsky, A. (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176.

    Article  CAS  Google Scholar 

  13. Hascall, V., Handley, C., McQuillan, D., Hascall, G., Robinson, H., and Lowther, D. (1983) The effect of serum on biosynthesis of proteoglycans by bovine articular cartilage in culture. Arch. Biochem. Biophys. 224, 206–223.

    Article  CAS  Google Scholar 

  14. Lane, J. and Brighton, C. (1974) In vitro rabbit articular cartilage organ model I. Morphology and glycosaminoglycan metabolism. Arthritis Rheum. 17, 235.

    Article  CAS  Google Scholar 

  15. McKenzie, L., Horsburgh, B., Ghosh, P., and Taylor, T. (1977) Organ culture of human articular cartilage: studies on sulphated glycosaminoglycan synthesis. In Vitro 13, 423–428.

    Article  CAS  Google Scholar 

  16. Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., and Lee, R. C. (1988) Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777–792.

    Article  CAS  Google Scholar 

  17. Torzilli, P. A., Grigiene, R., Huang, C., Friedman, S. M., Doty, S. B., Boskey, A. L., and Lust, G. (1997) Characterization of the cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30, 1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Allen, R.G., Eisenberg, S.R., Gray, M.L. (1999). Quantitative Measurement of the Biological Response of Cartilage to Mechanical Deformation. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:521

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:521

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics