Skip to main content

Use of Skin Equivalent Technology in a Wound Healing Model

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

  • 3750 Accesses

Abstract

Re-epithelialization is defined as the reconstitution of cells into an organized, stratified squamous epithelium that permanently covers a wound defect and restores function (1). Following wounding, keratinocytes are activated to undergo a series of phenotypic changes that have been well-characterized in vivo (24). However, in vitro studies of re-epithelialization have often been limited by their inability to simulate the in vivo tissue. Wound models using skin explants (58) or submerged keratinocyte cultures (9,10) demonstrate only partial differentiation and hyperproliferative growth. These systems have been useful for studying keratinoctye migration (11), but are limited in studying other aspects of re-epithelialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, R. A. F. (1996) Wound repair: overview and general considerations, in The Molecular and Cellular Biology of Wound Repair (Clark, R. A. F., ed.) Plenum, New York, pp. 1–50.

    Google Scholar 

  2. Hertle, M. D., Kubler, M.-D., Leigh, I. M., and Watt, F. M. (1992) Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J. Clin. Invest. 89, 1892–1901.

    Article  CAS  Google Scholar 

  3. Viziam, C. B., Maltotsy, A. G., and Mescon, H. (1964) Epithelialization of small wounds. J. Invest. Dermatol. 43, 499–507.

    Article  CAS  Google Scholar 

  4. Mansbridge, J. N. and Knapp, A. M. (1987) Changes in keratinocyte maturation during wound healing. J. Invest. Dermatol. 89, 253–263.

    Article  CAS  Google Scholar 

  5. Freeman, A. E., Eigel, H. J., Herman, B. J., and Kleinfeld, K. L. (1976) Growth and characterization of human skin epithelial cell cultures. In Vitro 2, 352–358.

    Article  Google Scholar 

  6. Stenn, K. S. (1978) The role of serum in the epithelial outgrowth of mouse skin explants. Br. J. Dermatol. 98, 411–416.

    Article  CAS  Google Scholar 

  7. Marks, S. and Nishikawa, T. (1973) Active epidermal movement in human skin in vitro. Br. J. Dermatol. 88, 245–248.

    Article  CAS  Google Scholar 

  8. Hintner, H., Fritsch, P. O., Foidart, J-M., Stingl, G., Schuler, G., and Katz, S. I. (1980) Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin. J. Invest. Dermatol. 74, 200–204.

    Article  CAS  Google Scholar 

  9. Stenn, K. S., Madri, J. A., Tinghitella, T., and Terranova, V. P. (1983) Multiple mechanisms of dissociated epidermal cell spreading. J. Cell Biol. 96, 63–67.

    Article  CAS  Google Scholar 

  10. Stenn, K. S. and Milstone, L. M. (1984) Epidermal cell confluence and implications for a two-step mechanims of wound closure. J. Invest. Dermatol. 83, 445–447.

    Article  CAS  Google Scholar 

  11. Woodley, D. T., O’Keefe, E. J., and Prunieras M. (1985) Cutaneous wound healing: a model for cell-matrix interactions. J. Am. Acad. Dermatol. 12, 420–433.

    Article  CAS  Google Scholar 

  12. Bell, E., Ehrlich, H. P., Buttle, D. J., and Nakatsuji, T. (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211, 1052–1054.

    Article  CAS  Google Scholar 

  13. Parenteau, N. (1994) Skin equivalents, in The Keratinocyte Handbook, vol. II) (Leigh, I. M. and Watt, F. W., eds.), Cambridge University Press, pp. 45–56.

    Google Scholar 

  14. Garlick, J. A. and Taichman, L. B. (1994) The fate of human keratinocytes during re-epithelialization in an organotypic culture model. Lab. Invest. 70, 916–924.

    CAS  Google Scholar 

  15. Winter, G. D. (1972) Epidermal regeneration studied in the domestic pig, in Epidermal Wound Healing (Maibach, H. I. and Rovee, D. T., eds.), Year Book, Chicago, pp. 71–1112.

    Google Scholar 

  16. Garlick, J. A. and Taichman, L. B. (1994b) Effect of TGF-β1 on re-epithelialization of human keratinocytes in vitro: an organotypic model. J. Invest. Dermatol. 103, 554–559.

    Article  CAS  Google Scholar 

  17. Garlick, J. A., Parks, W. C., Welgus, H. G., and Taichman, L. T. (1996) Re-epithelialization of oral keratinocytes in vitro. J. Dental Res. 75, 912–918.

    Article  CAS  Google Scholar 

  18. Eming, S. A. and Morgan, J. R. (1996) Methods for the use of genetically modifed keratinocytes in gene therapy, in Methods in Molecular Medicine, Gene Therapy Protocols (Robbins, P., ed.), Humana, Totowa, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Vaccariello, M.A., Javaherian, A., Parenteau, N., Garlick, J.A. (1999). Use of Skin Equivalent Technology in a Wound Healing Model. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:391

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:391

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics