Skip to main content

Microencapsulation of Enzymes, Cells, and Genetically Engineered Microorganisms

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

  • 3697 Accesses

Abstract

Microencapsulation of biologically active material in the form of artificial cell was reported as early as 1964 (14). However, it is only in the past 10 yr that many centers have extensively developed this (5). More recently, we have concentrated on three areas of artificial cells for blood substitutes, enzyme therapy, and cell therapy. Space allows only a few examples to be given here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, T. M. S. (1964) Semipermeable microcapsules. Science 146, 524,525.

    Article  Google Scholar 

  2. Chang, T. M. S., MacIntosh, F. C, and Mason, S. G. (1966) Semipermeable aqueous microcapsules: I. Preparation and properties. Can. J. Physiol. Pharmacol. 44, 115–128.

    CAS  Google Scholar 

  3. Chang, T. M. S., MacIntosh, F. C, and Mason, S. G. (1971) Encapsulated hydrophilic compositions and methods of making them. Canadian Patent 873,815,1971.

    Google Scholar 

  4. Chang, T. M. S. (1972) Artificial Cells, Monograph, Charles C Thomas, Springfield, IL.

    Google Scholar 

  5. Chang, T. M. S. (1995) Artificial cells with emphasis on bioencapsulation in biotechnology. Biotechnol. Annu. Rev. 2, 267–295.

    Google Scholar 

  6. Chang, T. M. S. (1997) Recent and future developments in modified hemoglobin and microencapsulated hemoglobin as red blood cell substiutes. Artif. Cells Blood Substitutes Immobilization Biotechnol. 25, 1–24.

    Article  Google Scholar 

  7. Chang, T. M. S. (1997) Blood Substitutes: Principles, Methods, Products and Clinical Trials. Karger/Landes, Austin, TX.

    Google Scholar 

  8. Chang, T. M. S. and Yu, W. P. (1996) Biodegradable polymer membrane containing hemoglobin for blood substitutes. U. S. A. Patent approved in 1996.

    Google Scholar 

  9. Yu, W. P. and Chang, T. M. S. (1996) Submicron polymer membrane hemoglobin nanocapsules as potential blood substitutes: preparation and characterization. Artif. Cells Blood Substitutes Immobilization Biotechnol. 24, 169–184.

    Article  CAS  Google Scholar 

  10. Chang, T. M. S. and Poznansky, M. J. (1968) Semipermeable microcapsules containing catalase for enzyme replacement in acatalsaemic mice. Nature 218, 242–245.

    Article  Google Scholar 

  11. Chang, T. M. S. (1971) The in vivo effects of semipermeable microcapsules containing L-asparaginase on 6°C3HED lymphosarcoma. Nature 229, 117,118.

    Article  CAS  Google Scholar 

  12. Chang, T. M. S. (1989) Preparation and characterization of xanthine oxidase immobilized by microencapsulation in artificial cells for the removal of hypoxanthine. J. Biomater. Artif Cells Artif. Organs 17, 611–616.

    CAS  Google Scholar 

  13. Palmour, R. M., Goodyer, P., Reade, T., and Chang, T. M. S. (1989) Microencapsulated xanthine oxidase as experimental therapy in Lesch-Nyhan Disease. Lancet 2, 687,688.

    Article  CAS  Google Scholar 

  14. Chang, T. M. S., Bourget, L., and Lister, C. (1992) Orgal administration of microcapsules for removal of amino acids, US Patent No 5,147,641.

    Google Scholar 

  15. Chang, T. M. S., Bourget, L., and Lister, C. (1995) A new theory of enterorecirculation of amino acids and its use for depleting unwanted amino acids using oral enzymeartificial cells, as in removing phenylalanine in phenylketonuria. Artif. Cells Blood Substitutes Immobilization Biotechnol. 25, 1–23.

    Google Scholar 

  16. Bourget, L. and Chang, T. M. S. (1986) Phenylalanine ammonia-lyase immobilized in microcapsules for the depletion of phenylalanine in plasma in phenylketonuric rat model. Biochim. Biophys. Acta 883, 432–438.

    CAS  Google Scholar 

  17. Safos, S. and Chang, T. M. S. (1995) Enzyme replacement therapy in ENU2 phenylketonuric mice using oral microencapsulated phenylalanine ammonia-lyase: a preliminary report. Artif. Cells Blood Substitutes Immobilization Biotechnol. 25, 681–692.

    Google Scholar 

  18. Chang, T. M. S. (1985) Artificial cells with regenerating multienzyme systems. Methods Enzymol. 112, 195–203.

    Article  CAS  Google Scholar 

  19. Gu, K. F., Chang, T. M. S. (1990) Production of essential L-branched-chained amino acids, in bioreactors containing artificial cells immobilized multienzyme systems and dextran-NAD+. Appl. Biochem. Biotechnol. 26, 263–269.

    Article  Google Scholar 

  20. Chang, T. M. S. (1965) Semipermeable aqueous microcapsules. PhD Thesis. McGill University.

    Google Scholar 

  21. Lim, F. and Sun, A. M. (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–909

    Article  CAS  Google Scholar 

  22. Wong, H. and Chang, T. M. S. (1986) Bioartificial liver: implanted artificial cells microencapsulated living hepatocytes increases survival of liver failure rats. Int. J. Artif. Organs 9, 335,336.

    CAS  Google Scholar 

  23. Wong, H. and Chang, T. M. S. (1988) The viability and regeneration of artificial cell microencapsulated rat hepatocyte xenograft transplants in mice. J. Biomater. Artif. Cells Artif. Organs 16, 731–740.

    CAS  Google Scholar 

  24. Kashani, S. and Chang, T. M. S. (1991) Effects of hepatic stimulatory factor released from free or microencapsulated hepatocytes on galactosamine induced fulminant hepatic failure animal model. J. Biomater. Artif. Cells Immobilization Biotechnol. 19, 579–598.

    CAS  Google Scholar 

  25. Bruni, S. and Chang, T. M. S. (1989) Hepatocytes immobilized by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn Rats. J. Biomater. Artif. Cells Artif. Organs 17, 403–12.

    CAS  Google Scholar 

  26. Bruni, S. and Chang, T. M. S. (1991) Encapsulated hepatocytes for controlling hyper-bilirubinemia in Gunn Rats. Int. J. Artif. Organs 14, 239–241.

    CAS  Google Scholar 

  27. Bruni, S. and Chang, T. M. S. (1995) Kinetics of UDP-glucuronosyl-transferase in bilirubin conjugation by encnapsulated hepatocytes for transplantation into Gunn rats J. Artif. Organs 19, 449–457.

    Article  CAS  Google Scholar 

  28. Wong, H. and Chang, T. M. S. (1991) A novel two step procedure for immobilizing living cells in microcapsules for improving xenograft survival. J. Biomater. Artif. Cells Immobilization Biotechnol. 19, 687–698.

    CAS  Google Scholar 

  29. Chang, T. M. S. and Wong, H. (1992) A novel method for cell encapsulation in artificial cells. USA Patent No. 5,084,350.

    Google Scholar 

  30. Prakash, S. and Chang, T. M. S. (1995) Kinetic studies of microecnapsulated genetically engineered E. coli cells containing K. aerogenes gene for urea and ammonia removal. J. Biotechnol. Bioeng. 46, 621–626.

    Article  CAS  Google Scholar 

  31. Prakash, S. and Chang, T. M. S. (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nature Med. 2, 883–887.

    Article  CAS  Google Scholar 

  32. Koo, J. and Chang, T. M. S. (1993) Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results. Int. J. Artif. Organs 16, 557–560.

    CAS  Google Scholar 

  33. Garofalo, F. and Chang, T. M. S. (1991) Effects of mass transfer and reaction kinetics on serum cholesterol depletion rates of free and immobilized Pseudomonas pictorum. Appl. Biochem. Biotechnol. 27, 75–91.

    Article  CAS  Google Scholar 

  34. Lyold-George, I. and Chang, T. M. S. (1995) Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate and phenol into l-tyrosine and l-DOPA. J. Bioeng. Biotechnol. 48, 706–714.

    Article  Google Scholar 

  35. Yu, Y. T. and Chang, T. M. S. (1981) Lipid-polymer membrane artificial cells containing multienzyme systems, cofactors and substrates for the removal of ammonia and urea. Trans. Am. Soc. Artif. Intern. Organs 27, 535–538.

    CAS  Google Scholar 

  36. Chang, T. M. S. (1971) Stabilization of enzyme by microencapsulation with a concentrated solution o or by crosslinking with glutaraldehyde. Biochem. Biophys. Res. Com. 44, 1531–1533.

    Article  CAS  Google Scholar 

  37. Coromili, V. and Chang, T. M. S. (1993) Polydisperse dextran as a diffusing test solute to study the membrane permeability of alginate polylysine microcapsules. J. Biomater. Artif. Cells Immobilization Biotechnol. 21, 323–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chang, T.M.S. (1999). Microencapsulation of Enzymes, Cells, and Genetically Engineered Microorganisms. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:315

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:315

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics