Skip to main content

Preparation of Collagen—Glycosaminoglycan Copolymers for Tissue Regeneration

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

Abstract

Certain analogs of the extracellular matrix (ECM) have been shown to possess surprising morphogenetic activity during healing of lesions in various anatomical sites. This chapter describes methods for synthesis of the two ECM analogs that have been studied most extensively. The reader is referred to descriptions of these methods in the original literature (13). The biological activity of ECM analogs has been reviewed elsewhere (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yannas, I. V., Burke, J. F., Gordon, P. L., Huang, C., and Rubenstein, R. H. (1980) Design of an artificial skin. II. Control of chemical composition. J. Biomed. Mater. Res. 14, 107–131.

    Article  CAS  Google Scholar 

  2. Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M., and Murphy, G. F. (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA 86, 933–937.

    Article  CAS  Google Scholar 

  3. Chang, A. S., Yannas, I. V., Perutz, S., Loree, H., Sethi, R., Krarup, C, et al. (1990) Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix, in Progress in Biomedical Polymers (Gebelein, C. G. and Dunn, R. L., eds.), Plenum, New York, pp. 107–120.

    Google Scholar 

  4. Yannas, I. V. (1995) Regeneration templates, in The Biomedical Engineering Handbook (Bronzino, J. D., ed.), CRC, Boca Raton, FL, pp. 1619–1635.

    Google Scholar 

  5. Yannas, I. V., Burke, J. F., Warpehoski, M., Stasikelis, P., Skrabut, E. M., Orgill, D., and Giard, D. J. (1981) Prompt, long-term functional replacement of skin. Trans. Am. Soc. Artif. Intern. Organs 27, 19–22.

    CAS  Google Scholar 

  6. Yannas, I. V., Burke, J. F., Orgill, D. P., and Skrabut, E. M. (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215, 174–176.

    Article  CAS  Google Scholar 

  7. Murphy, G. F., Orgill, D. P., and Yannas, I. V. (1990) Partial dermal regeneration is induced by biodegradable collagen—glycosaminoglycan grafts. Lab. Invest. 63, 305–313.

    Google Scholar 

  8. Orgill, D. P., Butler, C. E., and Regan, J. F. (1996) Behavior of collagen—GAG matrices as dermal replacement in rodent and porcine models. Wounds 8, 151–157.

    Google Scholar 

  9. Burke, J. F., Yannas, I. V., Quinby, W. C., Jr., Bondoc, C. C., and Jung, W. K. (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive skin injury. Ann. Surg. 194, 413–428.

    Article  CAS  Google Scholar 

  10. Heimbach, D., Luterman, A., Burke, J., Cram, A., Herndon, D., Hunt, J., et al. (1988) A multi-center randomized clinical trial: artificial dermis for major burns. Ann. Surg. 208, 313–320.

    Article  CAS  Google Scholar 

  11. Stern, R., McPherson, M., and Longaker, M. T. (1990) Histologic study of artificial skin used in the treatment of full-thickness thermal injury. J. Burn Care Rehabil. 11, 7–13.

    Article  CAS  Google Scholar 

  12. Billingham, R. E. and Medawar, P. B. (1951) The technique of free skin grafting in mammals. J. Exp. Biol. 28, 385–394.

    Google Scholar 

  13. Billingham, R. E. and Medawar, P. B. (1955) Contracture and intussusceptive growth in the healing of extensive wounds in mammalian skin. J. Anat. 89, 114–123.

    CAS  Google Scholar 

  14. Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T. V., Zervas, N. T., and Schoene, W. C. (1987) Regeneration of sciatic nerve across 15mm gap by use of a polymeric template, in Advances in Biomedical Polymers (Gebelein, C. G., ed.), Plenum, New York, pp. 1–9.

    Google Scholar 

  15. Lundborg, G., Dahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., and Varon, S. (1982) Nerve regeneration in silicone chambers: influence of gap length and distal stump components. Exp. Neurol. 76, 361–375.

    Article  CAS  Google Scholar 

  16. Chang, A. S. and Yannas, I. V. (1992) Peripheral nerve regeneration, in Neuroscience Year (Supplement 2 to the Encyclopedia ofNeuroscience), (Smith, B. and Adelman, G., eds.), Birkhaiiser, Boston, pp. 125–126.

    Google Scholar 

  17. Chamberlain, L. J. (1996) Long term functional and morphological evaluation of peripheral nerves regenerated through degradable collagen implants. S. M. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  18. Stone, K. R., Rodkey, W. G., Webber, R. J., McKinney, L., and Steadman, J. R. (1990) Future directions, collagen-based prostheses for meniscal regeneration. Clin. Orthop. 252, 129–135.

    Google Scholar 

  19. Loree, H. (1988) A freeze-drying process for fabrication of polymeric bridges for peripheral nerve regeneration. S. M. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  20. Forbes, M. J. (1980) Cross-flow filtration, transmission electron micrographic analysis and blood compatibility testing of collagen composite materials for use as vascular prosthesis. S. M. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  21. Sylvester, M., Yannas, I. V., and Salzman, E. W. (1989) Collagen banded fibril structure and the collagen platelet reaction. Thromb. Res. 55, 135.

    Article  CAS  Google Scholar 

  22. Chang, A. S.-P. (1988) Electrophysiological recovery of peripheral nerves regenerated by biodegradable polymer matrix. S. M. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  23. Loree, H. M., Yannas, I. V., Mikic, B., Chang, A. S., Perutz, S. M., Norregaard, T. V., and Krarup, C. (1989) A freeze drying process for fabrication of polymeric bridges for peripheral nerve regeneration. Proc. NE. Bioeng. Conf. 53–54.

    Google Scholar 

  24. Yannas, I. V. and Tobolsky, A. V. (1967) Cross-linking of gelatine by dehydration. Nature 215, 509–510.

    Article  CAS  Google Scholar 

  25. Yannas, I. V. (1972) Collagen and gelatin in the solid state, J. Macromol. Sci. Rev. Macromol. Chem. C7, 49–104.

    Google Scholar 

  26. Yannas, I. V., Burke, J. F., Huang, C., and Gordon, P. L. (1975) Correlation of in vivo collagen degradation rate with in vitro measurements. J. Biomed. Mater. Res. 8, 623–628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chamberlain, L.J., Yannas, I.V. (1999). Preparation of Collagen—Glycosaminoglycan Copolymers for Tissue Regeneration. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:3

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics