Skip to main content

Culture and Identification of Autologous Human Articular Chondrocytes for Implantation

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

  • 3727 Accesses

Abstract

The disability and pain that result from damage to articular cartilage within the knee joint has stimulated the development of several approaches to facilitate the restoration of joint function (19). Recently, cultured autologous chondrocytes, isolated from an individual’s own cartilage, have been expanded in vitro, and then implanted into the damaged site for repair of damaged knee cartilage (10). This remarkable process has been characterized by the modulation of gene expression during proliferation expansion and subsequent redifferentiation of cultured chondrocytes in vitro (11) and in vivo (12). Since the unique biomechanical properties of hyaline articular cartilage have been shown to be intimately linked with the biochemistry of the tissue (see Buckwalter and Mow ref. 13 for review), we have developed an in vitro system to verify that proliferatively expanded chondrocytes retain their ability to redifferentiate, or re-express their hyaline articular cartilage phenotype. Although the methods described herein were developed for specific application to chondrocytes, the principles for evaluation of biochemical and molecular biological properties of tissue-engineered materials, in vitro, may be applied to the development of any functional, high quality, tissue engineered implant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bert, J. M. and Maschka, K. (1989) The arthroscopic treatment of unicompartmental gonarthrosis: a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement alone. Arthroscopy 5, 25–32.

    Article  CAS  Google Scholar 

  2. Childers, J. C. and Ellwood, S. C. (1978) Partial chondrectomy and subchondral bone drilling for chondromalacia. Clin. Orthop. 114–120.

    Google Scholar 

  3. Coutts, R. D., Woo, S., Amiel, D., von Schroeder, H. P., and Kwan, M. K., (1992) Rib periochondral autografts in full-thickness articular cartilage defects in rabbits. Clinical Orthop. 275, 263–273.

    Google Scholar 

  4. Grande, D. A., Pitman, M. I., Peterson, L., Mensch, D., and Klein, M. ( 1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J. Orthop. Res. 7, 208–218.

    Article  CAS  Google Scholar 

  5. Homminga, G. N., Bulstra, S., Boumeester, P. M., and Van Der Linden, A. J. (1990) Perichondral grafting for cartilage lesions of the knee. J. Bone. Joint. Surg. Br. 72, 1003–1007.

    CAS  Google Scholar 

  6. Johnson, L. L. ( 1986) Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 2, 54–69.

    Article  CAS  Google Scholar 

  7. O’Driscoll, S. W. and Salter, R. B. (1984) The induction of neochondrogenesis in free intra-articular periosteal autograft under the influence of continuous passive motion. J. Bone. Joint. Surg. 1248–1257.

    Google Scholar 

  8. Rodrigo, J. J., Steadman, J. R., Silliman, J. F., and Fulstone, H. A. (1994) Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am. J. Knee Surg. 7, 109–115.

    Google Scholar 

  9. Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. L., and Goldberg, V. M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone. Joint. Surg. 74, 579–592.

    Google Scholar 

  10. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Eng. J. Med. 331, 889–895.

    Article  CAS  Google Scholar 

  11. Benya, P. and Schaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 30, 215–224.

    Article  CAS  Google Scholar 

  12. Shortkroff, S., Barone, L., Hsu, H. P., Wrenn, C., Gagne, T., Chi, T., et al. (1996) Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials 17, 147–154.

    Article  CAS  Google Scholar 

  13. Buckwalter, J. A. and Mow, V. C. (1992) Cartilage repair in osteoarthritis, in Osteoarthritis, Diagnosis, and Medical/Surgical Management, vol. 2, (Saunders, W. B., ed.), Philadelphia, pp. 71–107.

    Google Scholar 

  14. Aulthouse, A. L., Beck, M., Griffey, E., Sanford, J., Arden, K., Machado, M. A., and Horton, W. A. (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell. Dev. Biol. 25, 659–668.

    Article  CAS  Google Scholar 

  15. Watt, F. M. and Dudhia, J. (1988) Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading. Differentiation 38, 140–147.

    Article  CAS  Google Scholar 

  16. Bonaventure, J., Kadhom, N., Cohen-Solal, L., Ng, K. H., Bourguignon, J., Lasselin, C., and Freisinger, P. (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212, 97–104.

    Article  CAS  Google Scholar 

  17. Doege, K. L., Sasaki, M., Kimura, T., and Yamada, Y. (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, Aggrecan. J. Biol. Chem. 266, 894–902.

    CAS  Google Scholar 

  18. Kuivaniemi, H., Tromp, G., Chu, M. L., and Prockop, D. J. (1988) Structure of a full-length cDNA clone for the prepro alpha2 (I) chain of human type I procollagen. Comparison with the chicken gene confirms usual patterns of gene conservation. Biochem. J. 252, 633–640.

    CAS  Google Scholar 

  19. Baldwin, C. T., Reginato, A. M., Smith, C., Jiminez, S. A., and Prockop, D. J. (1989) Structure of cDNA clones coding for human type II procollagen. The alpha 1 (II) chain is more similar to the alpha 1 (II) chain than to other alpha chains of fibrillar collagens. Biochem. J. 262, 521–528.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tubo, R., Binette, F. (1999). Culture and Identification of Autologous Human Articular Chondrocytes for Implantation. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:205

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics