Skip to main content

Preparation of Immortalized Human Chondrocyte Cell Lines

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 18))

  • 3791 Accesses

Abstract

The chondrocyte is responsible for synthesis of cartilage matrix proteins, and, thereby, the specialized mechanical properties of articular cartilage, including tensile strength and resistence to mechanical loading (1). The limited repair response by chondrocytes accounts for a major component of the loss of articular cartilage in joint diseases such as osteoarthritis, a progressive disease associated with normal wear and tear of joints, aging, or trauma. Although research has been directed primarily toward developing therapeutic strategies that prevent degradation of cartilage matrix, recent work has also focused on promoting cartilage repair. Success of either strategy depends on the development of reliable cell culture models of human origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole, A. R. (1993) Cartilage in health and disease, in Arthritis and Allied Conditions: A Textbook of Rheumatology (McCarty, D. J. and Koopman, W. P., eds.), Lea and Febiger, Philadelphia, pp. 279ā€“333.

    Google ScholarĀ 

  2. Goldring, M. B. (1993) Degradation of articular cartilage in culture: regulatory factors, in Joint Cartilage Degradation: Basic and Clinical Aspects (Woessner, J. F., Jr. and Howell, D. S., eds.), Marcel Dekker, New York, pp. 281ā€“345.

    Google ScholarĀ 

  3. Goldring, M. B., Sandell, L. J., Stephenson, M. L., and Krane, S. M. (1986) Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes. J. Biol. Chem. 261, 9049ā€“9056.

    CASĀ  Google ScholarĀ 

  4. Goldring, M. B. and Krane, S. M. (1987) Modulation by recombinant interleukin 1 of synthesis of types I and III collagens and associated procollagen mRNA levels in cultured human cells. J. Biol. Chem. 262, 16,724ā€“16,729.

    CASĀ  Google ScholarĀ 

  5. Goldring, M. B., Birkhead, J., Sandell, L. J., Kimura, T., and Krane, S. M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest. 82, 2026ā€“2037.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. von der Mark, K., Gauss, V., von der Mark, H., and Muller, P. (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531ā€“532.

    ArticleĀ  Google ScholarĀ 

  7. Benya, P. D. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215ā€“224.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Castagnola, P., Moro, G., Descalzi-Cancedda, F., and Cancedda, R. (1986) Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J. Cell Biol. 102, 2310ā€“2317.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Alema, S., Tato, F., and Boettiger, D. (1985) Myc and src oncogenes have complementary effects on cell proliferation and expression of specific extracellular matrix components in definitive chondroblasts. Mol. Cell. Biol. 5, 538ā€“544.

    CASĀ  Google ScholarĀ 

  10. Gionti, E., Pontarelli, G., and Cancedda, R. (1985) Avian myelocytomatosis virus immortalizes differentiated quail chondrocytes. Proc. Natl. Acad. Sci. USA 82, 2756ā€“2760.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Horton, W. E., Jr., Cleveland, J., Rapp, U., Nemuth, G., Bolander, M., Doege, K., Yamada, Y., and Hassell, J. R. (1988) An established rat cell line expressing chondrocyte properties. Exp. Cell Res. 178, 457ā€“468.

    ArticleĀ  Google ScholarĀ 

  12. Thenet, S., Benya, P. D., Demignot, S., Feunteun, J., and Adolphe, M. (1992) SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J. Cell. Physiol. 150, 158ā€“167.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Mallein-Gerin, F. and Olsen, B. R. (1993) Expression of simian virus 40 large T (tumor) oncogene in chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc. Natl. Acad. Sci. USA 90, 3289ā€“3293.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Benoit, B., Thenet-Gauci, S., Hoffschir, F., Penformis, P., Demignot, S., and Adolphe, M. (1995) SV40 large T antigen immortalization of human articular chondrocytes. In Vitro Cell. Dev. Biol. 31, 174ā€“177.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Mataga, N., Tamura, M., Yanai, N., Shinomura, T., Kimata, K., Obinata, M., and Noda, M. (1996) Establishment of a novel chondrocyte-like cell line derived from transgenic mice harboring the temperature-sensitive simian virus 40 large T-antigen. J. Bone Miner. Res. 11, 1646ā€“1654.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Lefebvre, V., Garofalo, S., and deCrombrugghe, B. (1995) Type X collagen gene expression in mouse chondrocytes immortalized by a temperature-sensitive simian virus 40 large tumor antigen. J. Cell Biol. 128, 239ā€“245.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Goldring, M. B., Birkhead, J. R., Suen, L.-F., Yamin, R., Mizuno, S., Glowacki, J., Arbiser, J. L., and Apperley, J. F. (1994) Interleukin-1 Ī²-modulated gene expression in immortalized human chondrocytes. J. Clin. Invest. 94, 2307ā€“2316.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Fanning, E. and Knippers, R. (1992) Structure and function of simian virus 40 large T antigen. Annu. Rev. Biochem. 61, 55ā€“85.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Duncan, E. L., Whitaker, N. J., Moy, E. L., and Reddel, R. R. (1993) Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp. Cell Res. 205, 337ā€“344.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Rowe, D. W., Moen, R. C, Davidson, J. M., Byers, P. H., Bornstein, P., and Palmiter, R. D. (1978) Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis. Biochemistry 17, 1581ā€“1590.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Berman, A. E. and Morozevich, G. E. (1990) Secretion and intracellular degradation of collagen in cultures of normal and SV-40-transformed human fibroblasts. FEBS Lett. 263, 285ā€“263.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Woodworm, C. D., Kreider, J. W., Mengel, L., Miller, T., Meng, Y. L., and H. C, I. (1988) Tumorigenicity of simian virus 40-hepatocyte cell lines: effect of in vitro and in vivo passage on expression of liver-specific genes and oncogenes. Mol. Cell Biol. 8, 4492ā€“4501.

    Google ScholarĀ 

  23. Iwamoto, M., Yagami, K., LuValle, P., Olsen, B. R., Petropoulos, C. J., Ewert, D. L., and Pacifici, M. (1993) Expression and role of c-myc in chondrocytes undergoing endochondral ossification. J. Biol. Chem. 268, 9645ā€“9652.

    CASĀ  Google ScholarĀ 

  24. Jat, P. S. and Sharp, P. A. (1989) Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9, 1672ā€“1681.

    CASĀ  Google ScholarĀ 

  25. Mitchell, P. J., Wang, C., and Tjian, R. (1987) Positive and negative regulation of transcription in vitro: enhancer binding protein AP-2 is inhibited by SV40 T antigen. Cell 50, 847ā€“861.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Hansell, E. J., Frisch, S. M., Tremble, P. M., Murnane, J. P., and Werb, Z. (1995) Simian virus 40 transformation alters the actin cytoskeleton, expression of matrix metalloproteinases and inhibitor of metalloproteinases, and invasive behavior of human skin fibroblasts. Biochem. Cell Biol. 73, 373ā€“389.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Logan, S. K., Hansell, E. J., Damsky, C. H., and Werb, Z. (1996) T-Antigen inhibits metalloproteinase expression and invasion in human placental cells transformed with temperature-sensitive simian virus 40. Matrix Biol. 15, 81ā€“89.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Glowacki, J., Trepman, E., and Folkman, J. (1983) Cell shape and phenotypic expression in chondrocytes. Proc. Soc. Exp. Biol. Med. 172, 93ā€“98.

    CASĀ  Google ScholarĀ 

  29. Reginato, A. M., Iozzo, R. V., and Jimenez, S. A. (1994) Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on hydrogel substrate. Arthritis Rheum. 37, 1338ā€“1349.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Paulsen, D. F. and Solursh, M. (1988) Microtiter micromass cultures of limb-bud mesenchymal cells. In Vitro Cell. Dev. Biol. 24, 138ā€“147.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Kato, Y., Iwamoto, M., Koike, T., Suzuki, F., and Takano, Y. (1988) Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: Regulation by transforming growth factor Ī² and serum factors. Proc. Natl. Acad. Sci. USA 85, 9552ā€“9556.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Ballock, R. T. and Reddi, A. H. (1994) Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 126, 1311ā€“1318.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995) Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-Ī²1. Differentiation 59, 25ā€“34.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Sun, S., Aydelotte, M. B., Maldonaldo, B., Kuettner, K. E., and Kimura, J. H. (1986) Clonal analysis of the population of chondrocytes from the Swarm rat chondrosarcoma in agarose culture. J. Orthopaed. Res. 4, 427ā€“436.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Guo, J., Jourdian, G. W., and MacCallum, D. K. (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tiss. Res. 19, 277ā€“297.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Hauselmann, H. J., Fernandes, R. J., Mok, S. S., Schmid, T. M., Block, J. A., Aydelotte, M. B., Kuettner, K. E., and Thonar, E. J. (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci. 107, 17ā€“27.

    Google ScholarĀ 

  37. Gibson, G. J., Schor, S. L., and Grant, M. E. (1982) Effects of matrix macromol-ecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J. Cell Biol. 93, 767ā€“774.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Freed, L. E., Marquis, J. C, Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11ā€“23.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Nicoll, S. B., Denker, A. E., and Tuan, R. S. (1995) In vitro characterization of transforming growth factor-Ī²1-loaded composites of biodegradable polymer and mesenchymal cells. Cells Materials 5, 231ā€“244.

    CASĀ  Google ScholarĀ 

  40. Mizuno, S. and Glowacki, J. (1996) Chondroinduction of human dermal fibroblasts by demineralized bone in three-dimensional culture. Exp. Cell Res..

    Google ScholarĀ 

  41. Goldring, M. B. (1996) Human chondrocyte cultures as models of cartilage-specific gene regulation, in Methods in Molecular Biology: Human Cell Culture Protocols (Jones, G. E., ed.), Humana, Totawa, NJ, pp. 217ā€“231.

    ChapterĀ  Google ScholarĀ 

  42. Sams, A. E. and Nixon, A. J. (1995) Chondrocyte-laden collagen scaffolds for resrufacing extensive articular cartilage defects. Osteoarthritis Cartilage 3, 47ā€“59.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C, Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889ā€“895.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Crystal, R. G. (1995) Transfer of genes to humans: Early lessons and obstacles. Science 270, 404ā€“410.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Bandara, G., Mueller, G. M., Galea-Lauri, J., Tindal, M. H., Georgescu, H. I., Sucharek, M. K., et al. (1993) Intraarticular expression of the interleukin-1 receptor antagonist protein by ex vivo gene transfer. Proc. Natl. Acad. Sci. USA 90, 10,764ā€“10,768.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Geiler, T., Kriegsmann, J., Keyszer, G. M., Gay, R. E., and Gay, S. (1994) A new model for rheumatoid arthritis generated by engraftment of rheumatoid synovial tissue and normal human cartilage into SCID mice. Arthritis Rheum. 37, 1664ā€“1671.

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Harlow, E., Crawford, L. V., Pirn, D. C., and Williamson, N. M. (1981) Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39, 861ā€“869.

    CASĀ  Google ScholarĀ 

  48. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680ā€“685.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895ā€“2902.

    CASĀ  Google ScholarĀ 

  50. Vogel, K. G., Sandy, J. D., Pogany, G., and Robbins, J. R. (1994) Aggrecan in bovine tendon. Matrix Biol. 14, 171ā€“179.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Robbins, J. R. and Vogel, K. G. Mechanical loading and TGF-Ī² regulate proteoglycan synthesis in tendon. Arch. Biochem. Biophys. submitted.

    Google ScholarĀ 

  52. Lefebvre, V., Garofalo, S., Zhou, G., Metsaranta, M., Vuorio, E., and deCrombrugghe, B. (1994) Characterization of primary cultures of chondrocytes from type II collagen/Ī²-galactosidase transgenic mice. Matrix Biol. 14, 329ā€“335.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Lum, Z.-P., Hakala, B. E., Mort, J. S., and Recklies, A. D. (1996) Modulation of the catabolic effects of interleukin-1Ī²3 on human articular chondrocytes by transforming growth factor-Ī². J. Cell. Physiol. 166.

    Google ScholarĀ 

  54. Bonaventure, J., Kadhom, N., Cohen-Solal, L., Ng, K. H., Bourguigno, J., Lasselin, C., and Freisinger, P. (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212, 97ā€“104.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Robbins, J.R., Goldring, M.B. (1999). Preparation of Immortalized Human Chondrocyte Cell Lines. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicineā„¢, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:173

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:173

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics