Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering

  • Peter X. Ma
  • Robert Langer
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 18)


Organ transplantation has been successful since the early 1960s as a result of the success in immunologic suppression in the clinical setting (1), and has saved, and is continuing to save, countless lives, but is far from a perfect solution to tissue losses or organ failures. By far the most serious problem facing transplantation is donor scarcity. Approximately 30,000 Americans need liver transplantation each year, but only about 10% of the patients have the chance to receive a donated liver transplant (2). There is a total of approx 100,000 people in the United States with transplants, but there are more than 1 million with biomedical implants (3). Tissue engineering and cell transplantation are fields emerging to resolve the missing tissue and organ problems.


Ethylene Oxide Biodegradable Polymer Salt Particle Synthetic Biodegradable Polymer Rough Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Couch, N., Wilson, R., Hager, E., and Murray, J. (1966) Transplantation of cadaver kidneys: experience with 21 cases. Surgery 59, 183–188.Google Scholar
  2. 2.
    Langer, R. and Vacanti, J. (1993) Tissue engineering. Science 260, 920–926.CrossRefGoogle Scholar
  3. 3.
    Nerem, R. M. and Sambanis, A. (1995) Tissue engineering: from biology to biological substitutes. Tissue Eng. 1, 3–13.CrossRefGoogle Scholar
  4. 4.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895.CrossRefGoogle Scholar
  5. 5.
    Aebischer, P., Salessiotis, A., and Winn, S. (1989) Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps. J. Neurosci. Res. 23, 282–289.CrossRefGoogle Scholar
  6. 6.
    Colton, C. (1995) Implantable biohybrid artificial organs. Cell Transplant 4, 415–436.CrossRefGoogle Scholar
  7. 7.
    Darquy, S. and Reach, G. (1985) Immunoisolation of pancreatic B cells by microencapsulation. An in vitro study. Diabetologia 28, 776–780.Google Scholar
  8. 8.
    Nyberg, S., Shirabe, K., Peshwa, M., Sielaff, T., Crotty, P., Mann, H., et al. (1993) Extracorporeal application of a gel-entrapment, bioartificial liver: demonstration of drug metabolism and other biochemical functions. Cell Transplant 2, 441–452.Google Scholar
  9. 9.
    Reach, G. (1993) Bioartificial pancreas. Diabet. Med. 10, 105–109.CrossRefGoogle Scholar
  10. 10.
    Colton, C. and Avgoustiniatos, E. (1991) Bioengineering in development of the hybrid artificial pancreas. J. Biomech. Eng. 113, 152–170.CrossRefGoogle Scholar
  11. 11.
    Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., Winslow, D. N., and Vacanti, J. P. (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35, 1068–1077.CrossRefGoogle Scholar
  12. 12.
    Ma, P. X. and Langer, R. (1995) Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering, in Polymers in Medicine and Pharmacy (Mikos, A. G., Leong, K. W., Radomsky, M. L., Tamada, J. A., and Yaszemski, M. J., eds.), MRS, Pittsburgh, pp. 99–104.Google Scholar
  13. 13.
    Bell, E., Rosenberg, M., Kemp, P., Gay, R., Green, G., Muthukumaran, N., and Nolte, C. (1991) Recipes for reconstituting skin. J. Biomech. Eng. 113, 113–119.CrossRefGoogle Scholar
  14. 14.
    Krewson (née Beaty), C. E., Chung, S. W., Dai, W., and Saltzman, W. M. (1994) Cell aggregation and neurite growth in gels of extracellular matrix molecules. Biotechnol. Bioeng. 43, 555–562.Google Scholar
  15. 15.
    Yannas, I. V. (1994) Applications of ECM analogs in surgery. J. Cell. Biochem. 56, 188–191.CrossRefGoogle Scholar
  16. 16.
    Pongor, P., Betts, J., Muckle, D., and Bentley, G. (1992) Woven carbon surface replacement in the knee: independent clinical review. Biomaterials 13, 1070–1076.CrossRefGoogle Scholar
  17. 17.
    Gristina, A. (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237, 1588–1595.CrossRefGoogle Scholar
  18. 18.
    Cima, L., Vacanti, J., Vacanti, C., Ingber, D., Mooney, D., and Langer, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113, 143–151.CrossRefGoogle Scholar
  19. 19.
    Ma, P. X., Schloo, B., Mooney, D. and Langer, R. (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater. Res. 29, 1587–1595.CrossRefGoogle Scholar
  20. 20.
    Freed, L. E., Marquis, C. J., Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11–23.CrossRefGoogle Scholar
  21. 21.
    Vacanti, C., Kim, W., Upton, J., Vacanti, M., Mooney, D., Schloo, B., and Vacanti, J. (1993) Tissue-engineered growth of bone and cartilage. Transplantation Proc. 25, 1019–1021.Google Scholar
  22. 22.
    Organ, G., Mooney, D., Hansen, L., Schloo, B., and Vacanti, J. (1993) Enterocyte transplantation using cell-polymer devices to create intestinal epithelial-lined tubes. Transplantation Proc. 25, 998–1001.Google Scholar
  23. 23.
    Shinoka, T., Ma, P. X., Shum-Tim, D., Breuer, C. K., Cusick, R. A., Zund, et al. (1996) Tissue-engineering heart valves: autologous valve leaflet replacement study in a lamb model. Circulation 94 (Suppl.), II-164–II-168.Google Scholar
  24. 24.
    Thomson, R., Yaszemski, M., Powers, J., and Mikos, A. (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J. Biomater. Sci. Polym. Ed. 7, 23–38.CrossRefGoogle Scholar
  25. 25.
    Mooney, D., Park, S., Kaufmann, P., Sano, K., McNamara, K., Vacanti, J., and Langer, R. (1995) Biodegradable sponges for hepatocyte transplantation. J. Biomed. Mater. Res. 29, 959–965.CrossRefGoogle Scholar
  26. 26.
    Cusick, R. A., Lee, H., Sano, K., Pollok, J. M., Utsunomiya, H., Ma, P. X., Langer, R., and Vacanti, J. P. (1997) The effect of donor and recipient age on engraftment of tissue engineered liver. J. Pediat. Surg. 32(2), 357–360.CrossRefGoogle Scholar
  27. 27.
    Lee, H., Cusick, R. A., Browne, F., Kim, T. H., Ma, P. X., Utsunomiya, H., Langer, R., and Vacanti, J. P. Increased angiogenesis by local delivery of bFGF increases survival of transplanted hepatocytes, to be published.Google Scholar
  28. 28.
    Lee, H., Cusick, R. A., Utsunomiya, H., Ma, P. X., Langer, R., and Vacanti, J. P. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds, to be published.Google Scholar
  29. 29.
    Matlaga, B. and Salthouse, T. (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. J. Biomed. Mater. Res. 17, 185–197.CrossRefGoogle Scholar
  30. 30.
    Craig, P., Williams, J., Davis, K., Magoun, A., Levy, A., Bogdansky, S., and Jones, J. J. (1975) A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg. Gynecol. Obstet. 141, 1–10.Google Scholar
  31. 31.
    Mikos, A., Sarakinos, G., Leite, S., Vacanti, J., and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330.CrossRefGoogle Scholar
  32. 32.
    Leong, K., Brott, B., and Langer, R. (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941–955.CrossRefGoogle Scholar
  33. 33.
    Domb, A. and Langer, R. (1987) Polyanhydrides: I. Preparation of high molecular weight polyanhydrides. J. Polymer Science. 25, 3373–3386.Google Scholar
  34. 34.
    Choi, N. S. and Heller, J. (1978) US Patent 4,093,709.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Peter X. Ma
    • 1
  • Robert Langer
    • 2
  1. 1.Departments of Biologic and Materials Sciences and Biomedical Engineering, Macromolecular Sciences and Engineering CenterUniversity of Michigan School of DentistryAnn Arbor
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations