Skip to main content

In Vivo Brain Microdialysis:

Principles and Applications

  • Protocol
Book cover In Vivo Neuromethods

Part of the book series: Neuromethods ((NM,volume 32))

Abstract

During the last three decades, the necessity to measure the release of neurotransmitters in vivo in the central nervous system (CNS) has prompted the development of innovative techniques for sampling the extracellular fluid in the brain of experimental animals. Historically, one of the methods that evolved for this purpose was push-pull perfusion, which involved the stereotaxic insertion of a push-pull cannula into a selected area of the brain. Originally described by Gaddum (1961), such cannulae consisted of two stainless steel tubmgs assembled in a concentric manner, i.e., a smaller push cannula inserted into an outer pull cannula. The continuous perfusion of a physiological fluid through the system allows the collection of consecutive perfusate samples from the pull tubing. For over 20 yr, the push-pull technique was used routinely in a variety of studies dealing with the in vivo activity of neurotransmitters and other endogenous factors in the brain (reviewed by Philippu, 1984, Gardner et al., 1993; Myers et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercromie, E D. and Zigmond, M. J (1995) Modification of central catecholaminergic systems by stress and injury, in Psychopharmacology The Fourth Generation of Progress (Bloom, F E and Kupfer, D J, eds ) Raven, New York, pp 355–361

    Google Scholar 

  • Abercrombie, E D., Keller, R. W, and Zigmond, M. J (1988) Characterization of hrppocampal norepmephrine release as measured by microdialysis perfusion pharmacological and behavioural studies. Neuroscience 27, 897–904

    PubMed  CAS  Google Scholar 

  • Adell, A, Casanovas, J M, and Artlgas, F (1997) Comparative study in the rat of the actions of different types of stress on the release of 5-HT in rapine nucler and forebrain areas Neuropharmacology 36, 735–741

    PubMed  CAS  Google Scholar 

  • Adell, A, Carceller, A, and Artigas, F. (1993) In vivo brain dialysis study of the somatodendritic release of serotonin in the raphé nucler of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetrain. J Neurochem 60, 1673–1681

    PubMed  CAS  Google Scholar 

  • Adell, A, Sarna, G. S, Hutson, P H., and Curzon, G (1989) An in vivo dialysis and behavioural study of the release of 5-HT by p-chloroamphetamine in reserpine-treated rats Br J Pharmacol 97, 206–212

    PubMed  CAS  Google Scholar 

  • Adell, A and Artigas, F (1991) Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nucler and frontal cortex An in vivo brain microdialysis study Naunyn-Schmiedeberg’s Arch Pharmacol 343, 237–244

    CAS  Google Scholar 

  • Adell, A, Carceller, A, and Artigas, F (1991) Regional distribution of extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the brain of freely moving rats J Neurochem 56, 709–712

    PubMed  CAS  Google Scholar 

  • Amberg, G and Lindefors, N. (1989) Intracerebral microdialysis. II. Mathematical studies of diffusion kinetics J Pharmacol Meth 22, 157–183

    CAS  Google Scholar 

  • Arborelius, L, Nomikos, G G, Grillner, P., Hertel, P, Hook, B. B, Hacksell, U, and Svensson, T H. (1995) 5-HT1A receptor antagonists increase the activity of serotonergic cells in the dorsal raphe nucleus In rats treated acutely or chronically with citalopram. Naunyn-Schmtedeberg’s Arch Pharmacol 352, 157–165.

    CAS  Google Scholar 

  • Arborelius, L., Nomikos, G. G, Hertel, P, Salmi, P, Grillner, P., Hook, B. B, Hacksell, U, and Svensson, T H. (1996) The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram. Naunyn-Schmiedeberg’s Arch. Phurmacol 353, 630–640.

    CAS  Google Scholar 

  • Artigas, F., Romero, L, de Montigny, C., and Blier, P. (1996) Acceleration of the effect of selected antidepressant drugs in malor depression by 5-HT1A antagonists Trends Neurosci 19, 378–383

    PubMed  CAS  Google Scholar 

  • Aspley, S. and Beckett, S R. G (1996) Statistical analysis of microdialysis data. can we justify current practice? in Monitormg Molecules in Neuroscience (Gonzalez-Mora, J L., Borges, R, and Mas, M., eds ) Universidad de la Laguna, La Laguna (Tenerlfe), pp. 59–60.

    Google Scholar 

  • Auerbach, S B, Minzenberg, M J, and Wilkinson, L. O (1989) Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection draiysate serotonm reflects neuronal release Brain Res. 499, 281–290.

    PubMed  CAS  Google Scholar 

  • Augustine, G J, Chanton, M P, and Smith, S J (1987) Calcium action in synaptic transmitter release. Ann Rev Neurosci 10, 633–693

    PubMed  CAS  Google Scholar 

  • Bean, A J and Roth, R H (1991) Extracellular dopamine and neurotensm in rat prefrontal cortex in vivo effects of median forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreceptors J Neurosci 11, 2694–2702.

    PubMed  CAS  Google Scholar 

  • Bel, N and Artigas, F (1996) In vivo effects of the simultaneous blockade of serotonin and norepinephrme transporters on serotonergic function Microdialysis studies J Pharmacol Exp Ther 278, 1064–1072

    PubMed  CAS  Google Scholar 

  • Benveniste, H, Drejer, J, Schousboe, A, and Diemer, N H (1987) Regional cerebral glucose phosphorylation and blood flow after insertion of a mlcrodialysis fiber through the dorsal hippocampus in the rat J Neurochem 49, 729–734

    PubMed  CAS  Google Scholar 

  • Benvemste, H (1989) Brain microdialysis J Neurochem 52, 1667–1679

    Google Scholar 

  • Benveinste, H and Diemer, N H. (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus Acta Neuropathol 74, 234–238

    Google Scholar 

  • Benveinste, H, Hansen, A J, and Ottosen, N S (1989) Determmation of bram interstitial concentrations by microdialysis J Neurochem 52, 1741–1750

    Google Scholar 

  • Benveinste, H and Huttemeier, P C (1990) Microdialysis-theory and application Progr Neurobiol 35, 195–215

    Google Scholar 

  • Bungay, P M, Morrison, P F, and Dedrick, R. L (1990) Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro Life Sci 46, 105–119

    PubMed  CAS  Google Scholar 

  • Carboni, E, Imperato, A, Perezani, L, and Di Chiara, G (1989a) Amphetamine, cocaine, phencychdine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats Neuroscience 28, 653–661

    PubMed  CAS  Google Scholar 

  • Carboni, E, Cadoni, C, Tanda, G L, and Di Chiara, G (1989b) Calciumdependent, tetrodotoxin-sensitive stimulation of cortical serotonin release after a tryptophan load J Neurochem 53, 976–978

    PubMed  CAS  Google Scholar 

  • Carboni, E and Di Chiara, G (1989) Serotonin release estimated by transcortical dialysis in freely moving rats Neuroscience 32, 637–645

    PubMed  CAS  Google Scholar 

  • Chen, S Y, Burger, R L, and Reith, M E A. (1996) Extracellular dopamine in the rat ventral tegmental area and nucleus accumbens followmg ventral tegmental mfusion of cocaine Brain Res 729, 294–296

    PubMed  CAS  Google Scholar 

  • Chéramy, A, Leviel, V, and Glowinskl, J (1981) Dendritic release of dopamine in the substantia nigra Nature 289, 537–542

    PubMed  Google Scholar 

  • Consolo, S, Wu, C F, Fiorentim, F, Ladinsky, H, and Vezani, A (1987) Determmation of endogenous acelylcholine release in freely moving rats by transstriatal dialysis coupled to a radioenzymatic assay effect of drugs J Neurochem 48, 1459–1465

    PubMed  CAS  Google Scholar 

  • Cuadra, G, Summers, K, and Giacobini, E (1994) Cholinesterase inhibitor effects on neurotransmitters in rat cortex in vivo J Pharmacol Exp Ther 270, 277–284.

    PubMed  CAS  Google Scholar 

  • Dalas-Bailador, F, Costa, G, Eminett, S, Bonilla, C, and Dajas, F (1996) Acetylcholinesterase inhibitors block acetyicholme evoked release of dopamine in rat strlatum, in vivo Brarn Res 722, 12–18

    Google Scholar 

  • Damsma, G, Westerink, B. H C, De Vries, J B, Van den Berg, C J, and Horn, A S (1987) Measurement of acetylcholine release in freely moving rats by means of automated mtracerebral dialysis J Neurochem 48, 1523–1528.

    PubMed  CAS  Google Scholar 

  • Dawson, L. A, Stow, J, Dourish, C T, and Routledge, C. (1994) The analysis of excitatory amino acids in striatal microdlalysates using capillary electrophoresis and laser induced fluorescence detection, in Monitoring Molecules in Neurosciences, (Louilot, A, Durkin, T, Spampinato, U, and Cador, M, eds ), University Of Bordeaux, Bordeaux, pp 27–28

    Google Scholar 

  • De Boer, P. and Abercrombie, E D (1996) Physiological release of striatal acetylcholme in vivo modulation by Dl and D2 dopamine receptor subtypes J Pharmacol Exp Ther 277, 775–783

    Google Scholar 

  • De Lange, E C. M, Danhof, M, Zurcher, C, de Boer, A G, and Breimer, D D (1995) Repeated microdialysis perfusions. periprobe tissue reactions and BBB permeability Brain Res 702, 261–265

    PubMed  Google Scholar 

  • Delgado, J M R, DeFeudis, F V, Rotlh, R H., Ryugo, D. K, and Mitruka, B M (1972) Dialytrode for long term intracerebral perfusion in awake monkeys Arch Int Pharmacodyn 198, 9–21

    PubMed  CAS  Google Scholar 

  • Delgado, J M R, Lerma, J, Martm de1 Rio, R, and Sobs, J M (1984) Dialytrode technology and local profiles of amino acids in the awake cat brain J Neurochem 42, 1218–1228

    PubMed  CAS  Google Scholar 

  • Devnie, D P., Leone, P, and Wise, R A (1993) Striatal tissue preparation facihtates early samplmg in microdialysis and reveals an index of neuronal damage J Neurochem 61, 1246–1254

    Google Scholar 

  • Di Chlara, G (1990) In-vivo brain dialysis of neurotransmitters Trends Pharmacol Sci 11, 116–121

    Google Scholar 

  • Dykstra, K H, Hsiao, J K., Morrison, P F, Bungay, P M, Mefford, I N, Scully, M M., and Dedrick, R L (1992) Quantitative examination of tissue concentration profiles associated with microdialysis J Neurochem 58, 931–940

    PubMed  CAS  Google Scholar 

  • Ferré, S, O’Connor, W T, Fuxe, K, and Ungerstedt, U (1993) The striopalhdal neuron a main locus for adenosine-dopamine interactlons in the brain J Neurosci 13, 5402–5406

    PubMed  Google Scholar 

  • Fischer, W, Nilsson, O G, and Bjorklund, A. (1991) In vivo acetylcholine release as measured by microdialysis is unaltered in the hippocampus of cognitively impaired aged rats with degenerative changes in the basal forebrain Brain Res 556, 44–52

    PubMed  CAS  Google Scholar 

  • Fornal, C A, Metzler, C W, Marrosu, F, Ribierodovalle, L. E, and Jacobs, B L (1996) A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements. Brain Res 716, 123–133

    PubMed  CAS  Google Scholar 

  • Frothmgham, E P and Basbaum, A I. (1992) Construction of microdialysis probe with attached microinjection catheter J Neurosci Meth 43, 181–188

    Google Scholar 

  • Gaddum, J H (1961) Push-pull cannulae. J Physiol (London) 155, lP–2P

    Google Scholar 

  • Gardner, E L., Chen, J, and Paredes, W (1993) Overview of chemical sampling techniques J Neurosci Meth 48, 173–197.

    CAS  Google Scholar 

  • Georgieva, J, Luthman, J, Mohringe, B, and Magnusson, O (1993) Tissue and microdialysate changes after repeated and permanent probe implantation in the striatum of freely moving rats Brain Res Bull. 31, 463–470

    PubMed  CAS  Google Scholar 

  • Gonzalez-Mora, J L, Guadalupe, T, Fumero, B, and Mas, M (1991) Voltammetric monitornig of microdialysis-induced perturbation of brain extracellular environment, in Monitormg Molecules in Neuroscience, (Rollema, H, Westermk, B H C, and Drifthout, W J, eds ) University Centre for Pharmacy, Gromngen, pp 66–67

    Google Scholar 

  • Harvey, J. A., McMaster, S E, and Fuller, R W (1977) Comparison between neurotoxic and serotonin-depleting effects of various halogenated derivatives of amphetamine in the rat J Pharmacol Exp Ther 202, 581–589

    PubMed  CAS  Google Scholar 

  • Hernandez, L, Lee, F, and Hoebel, B G (1987) Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of freely moving rats increase in extracellular dopamine and serotonm Brain Res Bull 19, 623–628

    PubMed  CAS  Google Scholar 

  • Hernandez, L, Paez, X, Tucci, S, Murzi, E, Rodriguez, N, and Baptista, T (1994) New data on capillary zone electrophoresrs and microdialysis coupled to laser induced fluorescence detection, in Monitoring Molecules rn Neuroscience, (Louilot, A., Durkin, T, Spampinato, U, and Cador, M, eds.) University of Bordeaux, Bordeaux, pp 27–28

    Google Scholar 

  • Hsiao, J K., Ball, B A, Morrison, P F, Mefford, I N, and Bungay, P M (1990) Effects of different semipermeable membranes on in vitro and in viva performance of microdialysis probes J Neurochem 54, 1449–1452

    PubMed  CAS  Google Scholar 

  • Hutson, P H, Sarna, G S, Kantamaneni, B. D, and Curzon, G (1985) Monitornig the effect of a tryptophan load on brain mdole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis J Neurochem 44, 1266–1273

    PubMed  CAS  Google Scholar 

  • Hutson, P. H and Curzon, G (1989) Concurrent determination of effects of pchloroamphetamine on central extracellular 5-hydroxytryptamine concentration and behaviour Br J Pharmacol 96, 801–806

    PubMed  CAS  Google Scholar 

  • Imperato, A. and Di Chiara, G (1985) Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci 5, 297–306

    PubMed  CAS  Google Scholar 

  • Imperato, A and Di Chrara, G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection a new method for the study of the in vivo release of endogenous dopamine and metabohtes J Neurosci 4, 966–977

    PubMed  CAS  Google Scholar 

  • Itoh, Y, Olshi, R., Nishibori, M, and Saeki, K (1990) In vivo measurement of noradrenalme and 3, 4-dlhydroxyphenylethyleneglycol in the rat hypothalamus by microdialysis effects of various drugs affecting noradrenalme metabolism. J Pharmacol Exp Ther 255, 1090–1097

    PubMed  CAS  Google Scholar 

  • Jackson, D. and Abercromble, E D (1992) In vivo neurochemical evaluation of striatal serotonergic hypermnervation in rats depleted of dopamine at mfancy J Neurochem 58, 890–897

    PubMed  CAS  Google Scholar 

  • Jacobs, B L and Azmitia, E C (1992) Structure and function of the brain serotonm system Physiol Rev 72, 165–229

    PubMed  CAS  Google Scholar 

  • Jacobson, R. D, Sandberg, M, and Hamberger, A. (1985) Mass transfer in brain dialysis devices-a new method for estimation of extracellular amino acid concentration J Neurosci Meth 15, 263–268

    CAS  Google Scholar 

  • Justice, Jr, J. B (1993) Quantitative microdialysis of neurotransmltters J Neurosci Meth 48, 263–276

    CAS  Google Scholar 

  • Kalén, P, Kokaia, M, Lindvall, O., and Bjorklund, A (1988) Basic characteristics of noradrenalme release in the hippocampus of intact and 6-hydroxydopamine-lesioned rats as studied by in vivo microdialysis Brain Res 474, 374–379

    PubMed  Google Scholar 

  • Kalén, P, Strecker, R E, Rosengren, E, and Bjorklund, A (1988) Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection J Neurochem 51, 1422–1435

    PubMed  Google Scholar 

  • Kalivas, P W and Duffy, P (1991) A comparison of axonal and somatodendritic dopamine release using in vivo dialysis J Neurochem 56, 961–967

    PubMed  CAS  Google Scholar 

  • Korf, J and Venema, K (1985) Amino acids in rat striatal dialysates: methodologlcal aspects and changes after electroconvulsive shock. J Neurochem 45, 1341–1348.

    PubMed  CAS  Google Scholar 

  • Kehr, J. (1993) A survey on quantltatlve microdialysis: theoretical models and practical imphcatlons J. Neurosci Meth 48, 251–261

    CAS  Google Scholar 

  • Kolachana, B S., Saunders, R C, and Weinberger, D R (1994) An improved methodology for routine in vivo microdlalysis in non-human primates J Neurosci. Meth 55, 1–6

    CAS  Google Scholar 

  • Kolachana, B S, Saunders, R C, and Weinberger, D. R (1995) Augmentation of prefrontal cortical monoaminergic activity mhlbits dopamine release in the caudate nucleus An in vivo neurochemlcal assessment in the rhesus monkey. Neuroscience 69, 859–868.

    PubMed  CAS  Google Scholar 

  • Kovacs, D A, Zoll, J G, and Erickson, C K (1976) Improved intracerebral chemltrode for chemical and electrical studies of the brain. Pharmacol Biochem Behav 4, 621–625

    PubMed  CAS  Google Scholar 

  • Kreiss, D S, Wleland, S, and Lucki, I (1993) The presence of a serotonin uptake inhibitor alters pharmacological manipulations of serotonm release Neuroscience 52, 295–301

    PubMed  CAS  Google Scholar 

  • Lerma, J, Herranz, A S, Herreras, O., Abraira, V, and Martin del Rio, R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis Brain Res 384, 145–155

    PubMed  CAS  Google Scholar 

  • L’Heureux, R, Dennis, T, Curet, O, and Scatton, B (1986) Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortlcal dialysis effects of drugs affecting noradrenergic transmlssion. J Neurochem 46, 1794–1801

    CAS  Google Scholar 

  • Lindefors, N, Amberg, G, and Ungerstedt, U. (1989) Intracerebral microdlalysis: I. Experimental studies of diffusion kinetics. J Pharmacol Meth. 22, 141–156.

    CAS  Google Scholar 

  • Liu, D. X., Thangnipon, W., and Mcadoo, D. J. (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord Brain Res 547, 344–348.

    PubMed  CAS  Google Scholar 

  • Ludvig, N., Potter, P E, and Fox, S E. (1994) Simultaneous single-cell recordmg and microdlalysls within the same brain site in freely behaving rats. a novel neurobiological method. J Neurosci Meth 55, 31–40

    CAS  Google Scholar 

  • Matthews, J N. S, Altman, D G, Campbell, M, J, and Royston, P (1990) Analysis of serial measurements in medical research Br Med J 300, 230–235.

    CAS  Google Scholar 

  • McQuade, R and Sharp, T (1995) Release of cerebral 5-hydroxytryptamine evoked by electrical stimulation of the dorsal and median raphe nuclei effect of a neurotoxic amphetamine Neurosczence 68, 1079–1088.

    CAS  Google Scholar 

  • Millan, M H, Obrenovitch, T P, Sarna, G S, Lok, S-Y, Symon, L, and Meldrum, B. S (1991) Changes in rat brain extracellular glutamate concentration during seizures induced by systemic picrotoxin or focal bicuculline injection: an in vivo dialysis study with on-line enzymatic detection Epilepsy Res 9, 86–91.

    PubMed  CAS  Google Scholar 

  • Moghaddam, B and Bunney, B S (1989) Ionic composition of microdialysis perfusmg solution alters the pharmacological responsiveness and basal outflow of striatal dopamine J Neurochem 53, 652–654

    PubMed  CAS  Google Scholar 

  • Moor, E, Deboer, P, Beldhuis, H. J A, and Westermk, B H C (1994) A novel approach for studying septohippocampal cholmergic neurons in freely moving rats a microdialysis study with dual probe design Brain Res 648, 32–38

    PubMed  CAS  Google Scholar 

  • Morari, M, O’Connor, W T, Darvelid, K, Ungerstedt, U., Blanchi, C, and Fuxe, K (1996) Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat 1. Effects of perfusion with tetrodotoxm and low calcium medium Neuroscience 72, 79–87

    PubMed  CAS  Google Scholar 

  • Morgan, M E, Singhal, D, and Anderson, B D (1996) Quantitative assessment of blood-brain barrier damage durmg microdialysis J Pharmacol Exp Ther 277, 1167–1176

    PubMed  CAS  Google Scholar 

  • Morrison, P F, Bungay, P M., Hsiao, J K, Ball, B A, Mefford, I N, and Dedrick, R L (1991) Quantitative microdialysis analysis of transients and application to pharmacokinetics in brain J Neurochem 57, 103–119

    PubMed  CAS  Google Scholar 

  • Myers, R. D, Adell, A, and Lankford, M F (1997) Simultaneous comparison of cerebral dialysis and push-pull perfusion in the brain of rats a critical review Neurosci Brobehav Rev (m press)

    Google Scholar 

  • Obrenovitch, T P, Urenjak, J, Richards, D A, Ueda, Y, Curzon, G., and Symon, L (1993) Extracellular neuroactive ammo acids in the rat brain striatum during moderate and severe transient ischaemia J Neurochem 61, 178–186

    PubMed  CAS  Google Scholar 

  • Obrenovitch, T P, Urenlak, J, and Zilkha, E (1994) Intracerebral microdlalysis combined with recordmg of extracellular field potential a novel method for investigation of depolarizing drugs in vivo Br J Pharmacol 113, 1295–1302

    PubMed  CAS  Google Scholar 

  • Obrenovitch, T. P, Zilkha, E., and Urenjak, J (1995) Intracerebral microdialysis Electrophysiological evidence of a critical pitfall J Neurochem. 64, 1884–1887

    PubMed  CAS  Google Scholar 

  • Panter, S. S. and Faden, A. I (1992) Pretreatment with NMDA antagonists limits release of excitatory amino acids followmg traumatic brain injury Neurosci Lett 136, 165–168

    PubMed  CAS  Google Scholar 

  • Parry, T J, Carter, T L, and McEligott, J G (1990) Physical and chemical considerations in them vitro calibration of microdralysrs probes for biogeinc amine neurotransmitters and metabohtes J Neurosci Meth 32, 175–183

    CAS  Google Scholar 

  • Paxinos, G and Watson, C (1986) The Rat Brain in Stereotaxic Coordinates, Academic, Sydney

    Google Scholar 

  • Pei, Q, Zetterstrom, T, and Fillenz, M (1989) Measurement of extracellular 5-HT and 5-HIAA in hippocampus of freely moving rats using mrcrodialysis long-term applications Neurochem Int 15, 503–509

    PubMed  CAS  Google Scholar 

  • Phllippu, A. (1984) Use of push-pull cannulae to determine the release of endogenous neurotransmitters in distinct brain areas of anaesthetized and freely moving animals, in Measurement of Neurotransmitter Release In Vivo, (Marsden, C A., ed ) Wiley, Chrchester, UK, pp 3–37

    Google Scholar 

  • Robert, F, Bert, L, Lambas-Senas, L, Denoroy, L, and Renaud, B (1996) In vivo monitoring of extracellular noradrenaline and glutamate from rat brain cortex with 2-min microdialysis sampling using capillary electrophoresls and laser-induced fluorescence detection J Neurosci Meth 70, 153–162

    CAS  Google Scholar 

  • Romero, L, Bel, N, Artigas, F, de Montigny, C, and Blier, P (1996) Effect of pindolol on the function of pre-and postsynaptic 5-HT1A receptors in vivo microdlalysis and electrophysiological studies in the rat brain Neuropsychopharmacology 15, 349–360

    PubMed  CAS  Google Scholar 

  • Romero, L, Casanovas, J M, Hervás, I., Cortés, R., and Artigas F (1997) Strategies to optimize the antidepressant action of selective serotonin reuptake inhlbltors, in Anlidepressants New Pharmacological Strategies, (Skolmck, P, ed ) Humana, Totowa, NJ, pp. 1–33

    Google Scholar 

  • Romero, L, Celada, P, and Artigas, F (1994) Reduction of in vivo striatal 5 hydroxytryptamine release by 8-OH-DPAT after inactivation of G(l)/G(o) proteins in dorsal raphe nucleus Eur J Pharmacol 265, 103–106

    PubMed  CAS  Google Scholar 

  • Ronne-Engstrom, E, Carlson, H, Liu, Y, Ungerstedt, U and Hillered, L (1995) Influence of perfusate glucose concentration on dialysate lactate, pyruvate, aspartate, and glutamate levels under basal and hypoxic conditions a microdialysis study in rat brain J Neurochem 65, 257–262

    PubMed  CAS  Google Scholar 

  • Sabol, K E, Richards, J B, and Seiden, L. S (1992) Fluoxetine attenuates the DLfenfluramine-induced increase in extracellular serotonm as measured by in vivo dialysis. Brain Res 585, 421–424.

    PubMed  CAS  Google Scholar 

  • Sakai, K (1991) Physiological properties and afferent connections of the locus coeruleus and adlacent tegmental neurons involved in the generation of paradoxical sleep in the cat Prog Brain. Res 88, 31–46.

    PubMed  CAS  Google Scholar 

  • Santiago, M., Rollema, H, De Vries, J B, and Westermk, B H C (1991) Acute effects of intranigral apphcation of MPP+ on mgral and bilateral striatal release of dopamine simultaneously recorded by microdialysis Brain Res 538, 226–230

    PubMed  CAS  Google Scholar 

  • Santiago, M and Westermk, B H C (1992) The role of GABA receptors in the control of nigrostriatal dopaminergic neurons Dual probe microdialysis study in awake rats Eur J Pharmacol 219, 175–181

    PubMed  CAS  Google Scholar 

  • Sepulveda, J, Hernandez, L, Tucci, S, and Rada, P (1996) Release of excitatory amino acids by KCI in the hippocampus in rats a high time resolution microdialysis capillary electrophoresis study, in Monitoring Molecules in Neurosczence (Gonzalez-Mora, J L., Borges, R, and Mas, M, eds.) Universidad de la Laguna, La Laguna (Tenerife), pp 38–39

    Google Scholar 

  • Sharp, T, Bramwell, S R, Clark, D, and Grahame-Smith, D G. (1989) In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis changes in relation to 5-hydroxytryptaminergic neuronal activity J Neurochem 53, 234–240

    PubMed  CAS  Google Scholar 

  • Sharp, T., Bramwell, S. R, and Grahame-Smith, D. G. (1990) Release of endogenous 5-hydroxytryptamine in rat ventral hlppocampus evoked by electrlcal stimulation of the dorsal raphé nucleus as detected by microdialysis sensitivity to tetrodotoxin, calcium and calcium antagonists Neurosczence 39, 629–637.

    CAS  Google Scholar 

  • Soubré, P, Reisine, T D, and Glowinski, J (1984) Functional aspects of serotonin transmission in the basal ganglia a review and an in vivo approach using the push-pull cannula technique Neuroscience 13, 605–625.

    Google Scholar 

  • Sommer, W, Rimondim, R, O’Connor, W, Hansson, A C, Ungerstedt, U, and Fuxe, K (1996) Intrastrlatalry injected C-Fos antisense oligonucleotide interferes with striatonigral but not striatopallidal gamma aminobutyric acid transmission in the conscious rat Proc Nat1 Acad Sci USA 93, 14134–14139

    CAS  Google Scholar 

  • Taber, M T, Das, S, and Fibiger, H C (1995) Cortical regulation of subcortical dopamine release mediation via the ventral tegmental area J Neurochem 65, 1407–1410

    PubMed  CAS  Google Scholar 

  • Taber, M T and Fibiger, H C (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat modulation by metabotropic glutamate receptors, J Neurosci 15, 3896–3904

    PubMed  CAS  Google Scholar 

  • Taber, M. T and Fibiger, H C (1993) Electrical stimulatron of the medial prefrontal cortex increases dopamine release in the striatum Neuropsychopharmacology 9, 271–275

    PubMed  CAS  Google Scholar 

  • Taber, M. T and Fibiger, H C (1994) Cortical regulation of acetyicholme release in rat striatum Brain Res 639, 354–356

    PubMed  CAS  Google Scholar 

  • Tao, R and Auerbach, S. B. (1994) Anesthetics block morphine-induced increases in serotonin release in rat CNS Synapse l8 307–314

    Google Scholar 

  • Tao, R and Hjorth, S (1992) Differences in the in vitro and in vivo 5-hydroxytryptamine extraction performance among three common microdialysis membranes J Neurochem 59, 1778–1785

    PubMed  CAS  Google Scholar 

  • Tao, R, Ma, Z Y, and Auerbach, S B (1996) Differential regulation of 5-hydroxytryptamine release by GABA(A) and GABA(B) receptors in midbrain raphe nucler and forebrain of rats Br J Pharmacol 119, 1375–1384

    PubMed  CAS  Google Scholar 

  • Tepper, J M., Creese, I, and Schwartz, D H (1991) Stimulus-evoked changes in neostriatal dopamine levels in awake and anesthetized rats as measured by microdialysis Brain Res 559, 283–292

    PubMed  CAS  Google Scholar 

  • Thomas, D N and Holman, R B (1991) A microdialysis study of the regulation of endogenous nonadrenaline release in the rat hippocampus. J Neurochem 56, 1741–1746

    PubMed  CAS  Google Scholar 

  • Tossman, U, Eriksson, S, Delin, A, Hagenfeldt, L, Law, D, and Ungerstedt, U. (1983) Brain amino acids measured by intracerebral dialysis in portacaval shunted rats J Neurochem 41, 1046–1051

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1984) Measurement of neurotransmitter release by intracranial dialysis, in Measurement of Neurotransmztter Release In Vivo, (Marsden, C A, ed ) Wiley, Chichester, UK, pp 81–105

    Google Scholar 

  • Ungerstedt, U and Hallstrom, A (1987) In vivo microdialysis-a new approach to the analysis of neurotransmitters in the brain Life Sci 41, 861–864

    PubMed  CAS  Google Scholar 

  • Wellman, P J (1990) An inexpensive guide cannula and collar for microdralysis experiments. Brain Res Bull 25, 345–346

    PubMed  CAS  Google Scholar 

  • Westerink, B H C and De Vries, J B (1991) Effect of precursor loading on the synthesis rate and release of dopamine and serotonin in the striatum a microdialysis study in conscious rats J Neurochem 56, 228–233

    PubMed  CAS  Google Scholar 

  • Westermk, B. H. C (1995) Brain microdralysis and its application for the study of animal behaviour Behav Brain Res 70, 103–124

    Google Scholar 

  • Westermk, B. H C, Damsma G., Rollerma, H., De Vries, J.B., and Horn, A. S (1987) Scope and limitations of in viva brain dialysis a comparison of its application to various neurotransmitter systems Life Sci 41, 1763–1776

    Google Scholar 

  • Westermk, B H. C, De Vries, J B and Duran, R (1990) Use of microdialysis for monitormg tyrosine hydroxylase activity in the brain of conscious rats J Neurochem 54, 381–387

    Google Scholar 

  • Westermk, B H C and Tuinte, M H J (1986) Chronic use of intracerebral dialysis for the in vivo measurement of 3, 4-cirhydroxyphenylethylamine and its metabolite 3, 4-dihydroxyphenylacetic acid. J Neurochem 46, 181–185

    Google Scholar 

  • Westermk, B H C, Kwint, H F, and De Vries, J. B (1996) The pharmacology of mesolrmbrc dopamine neurons A dual probe microdralysis study in the ventral segmental area and nucleus accumbens of the rat brain J Neurosci 16, 2605–2611

    Google Scholar 

  • Yadid, G, Pacak, K, Kopm, I J, and Goldstem, D S (1993) Modified mrcrodialysis probe for sampling extracellular fluid and administering drugs in vivo Am J Physiol 265, R1205–R1211

    PubMed  CAS  Google Scholar 

  • Yamamuro, Y, Heri, K, Tanaka, J, Iwano, H., and Nomura, M (1995) Septohippocampal cholinergic system under the discrimination learning task in the rat A microdralysrs study with the dual probe approach Brain Res 684, 1–7

    PubMed  CAS  Google Scholar 

  • Yoshimoto, K and McBride, W J. (1992) Regulation of nucleus accumbens dopamine release by the dorsal rapine nucleus in the rat Neurochem. Res 17, 401–407

    PubMed  CAS  Google Scholar 

  • Zetterstrom, T and Ungerstedt, U (1984) Effects of apomorphme on the in vivo release of dopamine and Its metabolites studied by brain dialysis Eur J Pharmacol 97, 29–36

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Adell, A., Artigas, F. (1998). In Vivo Brain Microdialysis:. In: In Vivo Neuromethods. Neuromethods, vol 32. Humana Press. https://doi.org/10.1385/0-89603-511-5:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-511-5:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-511-9

  • Online ISBN: 978-1-59259-637-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics