Skip to main content

Application of Molecular Methods to the Study of Infections Caused by Salmonella spp.

  • Protocol
Molecular Bacteriology

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 15))

  • 1239 Accesses

Abstract

Disease caused by any member of the genus Salmonella is termed salmonellosis. The type of disease and its symptoms are generally related to the mfecting species and reflect the invasiveness and virulence of the organism. For example, enteric fevers are systemic diseases usually resulting from infection with Salmonella typhi, S paratyphi A, B, or C. Salmonellosis is caused by more than 2200 different salmonella serotypes, which can be classified into three groups according to their adaptation to human and animal hosts. One group of serotypes can be regarded as those as organisms that cause enteric fever only in humans and higher primates. Members of this group, which includes S. typhi, S paratyphi A, B, and C are restricted to humans and higher primates and are not found in food animals. A second group causes diseases in specific animals (e.g., S. dublin—cattle, S. pullorum—-poultry, S choleraesuis—pigs). However, when some members of this group cause infections in humans the disease is frequently invasive and can be life-threatening (e.g., S. cholerae-suls, S dublin). The third group, which includes the great majority of the remaining 2000+ serotypes, typically causes mild-to-moderate enteritis in humans, which is often self-limiting, but which can be severe in the young, the elderly, and in patients with other underlying complications This group includes the four serotypes most common in humans in England and Wales at the present time: S. enteritidis, S, typhimurium, S. virchow, and S. hadar. The great majority of serotypes of this third group are zoonotic in origin and have as their reservoirs animals used for food, particularly cattle, poultry, and pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wall, PG, de Louvois, J, Gilbert, R J., and Rowe, B (1996) Food poisoning: notifications, laboratory reports, and outbreaks-where do the statistics come from and what do they mean? CDR Rev. 6, R93–R100

    CAS  Google Scholar 

  2. Wray, C. and Davies, R H (1996) A veterinary view of salmonella in food animals. PHLS Microblol Dig 13, 44–48

    Google Scholar 

  3. Rodrigue, D. C, Tauxe, R. V., and Rowe, B (1990) International increase in Salmonella enteritidis a new pandemic? Epldemlol Infect 105, 21–27

    Article  CAS  Google Scholar 

  4. Threlfall, E J, Hall, M L M, and Rowe, B. (1992) Salmonella bacteraemia in England and Wales J Clin Pathol 45, 34–36

    Article  PubMed  CAS  Google Scholar 

  5. Threlfall, E J, Powell, N G, and Rowe, B (1994) Differentiation of salmonellas by molecular methods PHLS Microbiol Dig 11, 199–202

    Google Scholar 

  6. Cowan, S T and Steel, L J (1974) in Manual for the Identification of Medical Bacteria, 2nd ed Cambridge University Press, Cambridge, UK

    Google Scholar 

  7. Le Minor, L (1988) Typing of Salmonella species Eur J Clin Microbiol Infect Dis 7, 214–218.

    Article  PubMed  Google Scholar 

  8. Kauffmann F (1972) Serological Diagnosis of Salmonella Species Munksgaard, Copenhagen

    Google Scholar 

  9. Rowe, B and Hall, M L M (1989) Kauffmann-White Scheme 1989 London Central Public Health Laboratory

    Google Scholar 

  10. Threlfall, E J and Frost, J A (1990) The identification, typing and fingerprinting of Salmonella laboratory aspects and epidemiological application J Appl Bacteriol. 68, 5–16

    PubMed  CAS  Google Scholar 

  11. Frost, J A (1994) Testing for resistance to antibacterial drugs, in Methods in Practical Laboratory Bacteriology, (Chart, H ed), CRC, New York pp. 73–82

    Google Scholar 

  12. Threlfall, E J, Frost, J A, Ward, L R, and Rowe, B (1994) Epidemic in cattle of S typhimurium DT 104 with chromosomally-integrated multiple drug resistance Vet Rec. 134, 577

    Article  PubMed  CAS  Google Scholar 

  13. Wall, P G., Morgan, D, Lamden, K, Ryan, M, Griffin, M, Threlfall, E J, Ward, L R., and Rowe, B (1994) A case-control study of infection with an epidemicstrain of multiresistant Salmonella typhimurium DT 104 in England and Wales Comm Dis. Rep. 4, R130–135.

    CAS  Google Scholar 

  14. Evans, S J and Davies, R H (1996) Case control study of multiple-resistant Salmonella typhimurium DT104 infection of cattle in Great Britain Vet Ret 139, 557–

    CAS  Google Scholar 

  15. Frost, J A, Kelleher, A., and Rowe, B (1996) Increasing ciprofloxacin resistance in salmonellas in England and Wales, 1991-1994 J Antimicrob Chemother 37, 85–91

    Article  Google Scholar 

  16. Threlfall, E J, Frost, J A, Ward, L R., and Rowe, B (1990) Plasmid profiletyping can be used to subdivide phage type 49 of Salmonella typhimurium in outbreak investigations Epidemiol. Infect 104, 243–

    Article  PubMed  CAS  Google Scholar 

  17. Wray, C, Mclaren, I, Parkinson, N M., and Beedell Y (1987) Differentiation of Salmonella typhimurium DT204c by plasmid profile and biotyping Vet. Rec. 121, 514–516

    Article  PubMed  CAS  Google Scholar 

  18. Threlfall, E J., Hampton, M. D, Chart, H., and Rowe B. (1994) Use of plasmid profile typing for surveillance of Salmonella enteritidis phage type 4 from humans, poultry and eggs Epidemiol Infect 112, 25–32

    Article  PubMed  CAS  Google Scholar 

  19. Woodford, N., Johnson, A P, and Threlfall, E J (1994) Extraction and tingerprinting of bacterial plasmids, in Methods in Practical Laboratory Bacteriology. (Chart, H ed), CRC, Boca Raton, FL, pp 93–105

    Google Scholar 

  20. Threlfall, E J and Woodford, N (1995) Plasmid profile typing and plasmid fingerprinting, in Methods in Microbiology Volume 46. Diagnostic Bacteriology Protocols, (Howard, J. J and Whncombe, D. eds), Humana, Totowa, NJ, pp 225–236.

    Chapter  Google Scholar 

  21. Helmuth, R, Stephan, R, Bunge, C, Hoog, B, Steinbeck, A, and Bulling, E (1985) Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serovars Infect Immun 48, 175–182

    PubMed  CAS  Google Scholar 

  22. Wtihamson, C M, Pullinger, G D, and Lax A J (1988) Identification of an essential virulence region on Salmonella plasmids. Microbial Pathol 5, 469–473

    Article  Google Scholar 

  23. Lax, A J, Pullinger, G D, Spmk, J M, Quresht, F, Wood, M W., and Jones, P W (1993) Plasmid genes involved in virulence, in Salmonella, in Btologv of Salmonella, (Cabello, F, Hormaeche, C, Mastroemi, P, and Bonma, L, eds), Plenum, New York, pp 181–190

    Google Scholar 

  24. Hampton, M D., Threlfall, E J, Frost, J A., Ward, L R, and Rowe, B (1995) Salmonella typhimurium DT 193 differentiation of an epidemtc phage type by antibiogram, plasmid profile, plasmid fingerprint and salmonella plasmid vnulence (spv) gene probe J Appl Bacteriol 78, 402–408

    PubMed  CAS  Google Scholar 

  25. Norel, F, Pisano, M-R, Ntcoh, J, and Popoff, M Y (1989a) Nucleotide sequence of the plasmid-borne vuulence gene mkfA encoding a 28kDa polypeptide from Salmonella typhimurium Res Microbiol 140, 263–265

    Article  PubMed  CAS  Google Scholar 

  26. Norel, F, Ptsano, M-R., Ntcoli, J, and Popoff, M Y (1989b) Nucleotide sequence of the plasmid-borne virulence gene mkjB from Salmonella typhtmurium Res Microbiol 140, 263–265

    Article  PubMed  CAS  Google Scholar 

  27. Guhg, P A and Chtodo, V A (1990) Genetic and DNA sequence analysts of the Salmonella typhimurium virulence plasmid gene encoding the 28,000-molecular weight protein Infect Immun 58, 2561–2

    Google Scholar 

  28. Guhg, P A, Caldwell, A L., and Chtodo, V A (1990) Identification, genetic analysis and DNA sequence of a 7 8 kb virulence region of the Salmonella typhimurium virulence plasmid Mol. Microbiol 6, 1395–1

    Google Scholar 

  29. Giovannetti, L and Ventura, S (1995) Application of total DNA restriction pattern analysis to identification and differentiation of bacterial strams, in Methods in Microbiology, vol 46 Diagnostic Bacteriology Protocols, (Howard, J J and Whitcombe, D, eds), Humana, Towata, NJ, pp 165–179

    Chapter  Google Scholar 

  30. Hillier, A J and Davidson, B E (1995) Pulsed field gel electrophoresis, in Methods in Mtcrobiology, vol 46 Dragnostic Bacteriology Protocols, (Howard, J J and Whitcombe, D, eds.), Humana, Towata, NJ, 149–164

    Chapter  Google Scholar 

  31. Kaufmann, M E and Pitt, T L (1994) Pulsed-field gel electrophoresis, in Methods in Practical Laboratory Bacteriology, (Chart, H ed), CRC, Boca Raton, FL, 123–138

    Google Scholar 

  32. Thong, K-L, Cheong, Y-M, Puthucheary, S Koh, C-L., and Pang, T (1994) Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis J Clin Microbiol 32, 1135–1141

    PubMed  CAS  Google Scholar 

  33. Threlfall, E J, Hampton, M D, Ward, L R, and Rowe, B (1996) Application of pulsed-field gel electrophoresis to an international outbreak of Salmonella agona Emerging Infect Dis 130–132

    Google Scholar 

  34. Punia, P, Ridley, A M., Hampton, M D, Ward, L R Rowe, B., and Threlfall, E J (1997) Pulsed-field electrophoretic fingerprinting of Salmonella indtana and its epidemiological apphcability J Appl Microbiol, in press.

    Google Scholar 

  35. Powell, N G, Threlfall, E J, Chart, H., and Rowe, B (1994) Subdivision of Salmonella enteritidis PT 4 by pulsed-field gel electrophoresis potential for epidemiological surveillance FEMS Microbiol Lett 119, 193–198

    Article  CAS  Google Scholar 

  36. Powell, N G., Threlfall, E J, Chart, H, Schofield, S L, and Rowe, B (1995) Correlation of change in phage type with pulsed-field profile and 16S rrn profile in Salmonella enteritidis phage types 4, I and 9a Eptdemiol Infect 114, 403–411

    Article  CAS  Google Scholar 

  37. Grtmont, F and Grtmont, P A. D (1986) Ribosomal ribonucleic acid generestriction patterns as potential taxonomic tools Ann Inst Pasteur 137B, 165–175

    Article  Google Scholar 

  38. Martinetti, G and Altwegg, M (1990) rRNA gene restnction patterns and plasmid analysis as a tool for typing Salmonella enteritidis Res Microbiof 141, 1151–1162

    Article  CAS  Google Scholar 

  39. Altwegg, M, Htckman-Brenner, F W., and Farmer, J J, III (1989) Ribosomal RNA gene restriction patterns provide increased sensitivity for typing Salmonella typht strains J. Inf Dis 160, 145–149

    CAS  Google Scholar 

  40. Stanley, J, Chowdry-Baquar, N, and Threlfall, E J (1993) Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS200 and 16S rrn loci J Gen Mtcrobiol 139, 1133–1140

    CAS  Google Scholar 

  41. Gruner, E, Martinetti, G, Lucchini, G., Hoop, R K., and Altwegg, M (1994) Molecular epidemiology of Salmonella enteritidis Eur J Epidemiol 10, 85–89

    Article  PubMed  CAS  Google Scholar 

  42. Powell, N G, Threlfall, E J, Chart, H, Schofield, S L, and Rowe, B (1995) Correlation of change in phage type with pulsed field profile and 16S rrn profile in Salmonella enteritidis phage types 4, 7 and 9a Eptdemiol Infect 114, 403–

    Article  CAS  Google Scholar 

  43. Grimont, F., and Grimont, P (1995) Determination of rRNA gene restriction patterns, in Methods in Microbtology Volume 46 Diagnostic Bacteriology Protocols, (Howard, J J and Whitcombe, D, eds), Humana, Totowa, NJ, pp 181–200

    Chapter  Google Scholar 

  44. Tompkins, L S, Troup, N, Labaigne-Roussel, A., Cohen, M L (1986) Cloned, random chromosomal sequences as probes to identify Salmonella species J Infect Dis 152, 15–162

    Google Scholar 

  45. Stanley, J and Saunders, N (1996) DNA insertion sequences and the molecular epidemiology of Salmonella and Mycobacterium J Med Microbiol 45, 236–251

    Article  PubMed  CAS  Google Scholar 

  46. Lam, S and Roth, J R (1983) IS200: a Salmonella-specific insertion sequence Cell 34, 951–960

    Article  PubMed  CAS  Google Scholar 

  47. Gibert, I, Barbe, J, and Casadesus, J (1990) Distribution of insertion sequence IS200 in Salmonella and Shigella J Gen Microbiol 36, 2555–2560

    Google Scholar 

  48. Baquar, N, Burnens, A, and Stanley, J (1994) Comparative evaluation of molecular typing of strains from a national epidemic due to Salmonella brandenburg by rRNA gene and IS200 probes and pulsed-field gel electrophorests J Clin Microbiol 32, 1876–1880

    PubMed  CAS  Google Scholar 

  49. Pelkonen, S, Romppanen, E.-L, Siitonen, A., and Pelkonen, J (1994) Dtfferentiation of Salmonella serovar infantis from human and animal sources by fingerprinting IS200 and 16S rrn loci J Clin Microbiol 32, 2128–2133

    PubMed  CAS  Google Scholar 

  50. Threlfall, E J, Torre, E, Ward, L R, Davalos-Perez, A, Rowe, B., and Gibert, I (1994) Insertion sequence IS200 fingerprinting of Salmonella typhi. an assessment of epidemiological applicability Epidemiol Infect 112, 253–261

    Article  PubMed  CAS  Google Scholar 

  51. Stanley, J S, Chowdry-Baquar, N, and Threlfall, E J (1993) Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS200 and 16S rrn loci J Gen Microbiol 139, 1133–1140

    PubMed  CAS  Google Scholar 

  52. Fadl, A A, Nguyen, A V, and Khan, M I (1995) Analysis of Salmonella enteritidis isolates by arbitarily primed PCR J Clin Mlcrobiol 33, 987–989

    CAS  Google Scholar 

  53. Lin, A W, Usera, M A, Barrett, T J, and Goldsby, R A (1996) Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis J Clin Microbiol 34, 870–876

    PubMed  CAS  Google Scholar 

  54. Hilton, A C, Banks, J G, and Penn, C W (1996) Random amplification of polymorphic DNA (RAPD) of Salmonella. strain differentiation and characterisation of amplified sequences J Appl Bacteriol 81, 575–584

    PubMed  CAS  Google Scholar 

  55. Stern, M J, Ames, G L F, Smith, N H, Robinson, E C., and Higgins, C F (1984) Short, interspersed repetitive DNA sequences in prokaryotic genomes J Bacterlol 174, 4525–4529

    Google Scholar 

  56. Versalovtc, J, Koeuth, T, and Lupskr, J R (1991) Drstribution of repetitive DNA sequences in eubacterra and apphcation to fingerprinting of bacterial genomes Nuclezc Aczds Res 19, 6823–6831

    Article  Google Scholar 

  57. Millernann Y, Lesages-Descauses, M-C, Lafont, J-P, and Chaslus-Dancla, E (1996) Comparison of random amplified polymorphic DNA analysis and enterobacterial repetitive intergeinc consensus-PCR for epidemtoiogical studies of Salmonella FEMSImmunol Med Mlcrobiol 14, 129–134

    Google Scholar 

  58. Kantama, L, Jayanetra, P, and Bangtrakulnonth, A (1995) Epidemiological study of Salmonella enteritidis outbreak in Thailand by random amplified polymorphic DNA (RAPD) technique Southeast Asian J Trop Med Pub1 Health 26, 49–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

John Threlfall, E., Hampton, M.D., Ridley, A.M. (1998). Application of Molecular Methods to the Study of Infections Caused by Salmonella spp.. In: Woodford, N., Johnson, A.P. (eds) Molecular Bacteriology. Methods in Molecular Medicine™, vol 15. Humana Press. https://doi.org/10.1385/0-89603-498-4:355

Download citation

  • DOI: https://doi.org/10.1385/0-89603-498-4:355

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-498-3

  • Online ISBN: 978-1-59259-599-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics