DNA Amplification

General Concepts and Methods
  • Nick A. Saunders
  • Jonathan P. Clewley
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 15)

Abstract

The polymerase chain reaction (PCR) was first described in 1985 (1), although its theoretical roots go back beyond that time (2). It is the most versatile of the amplification methods, the others (see Subheading 4.) are more or less confined to diagnostic applications. For example, the product of a PCR, often referred to as an amplification, can be readily sequenced for diagnostic, typing, fingerprinting, or molecular epidemiologic reasons. PCR is now taking its place in diagnostic microbiology laboratories as an adjunct to culture and serologic tests PCR tests are available in kit form under the AMPLICOR™ name (RocheDiagnostic Systems, Base & Switzerland).

Keywords

Hydrolysis Hepatitis Codon Agarose Tuberculosis 

References

  1. 1.
    Saikt, R K, Scharf, S, Faloona, F, Mullis, K B, Horn, G. T, Erlich, H A,and Arnheim, N, (1985) Enzymatic amplification of beta-globm sequences and restriction site analysts for diagnosts of sickle cell anemia. science 230, 1350–1354CrossRefGoogle Scholar
  2. 2.
    Kleppe, K, Ohtsuka, E, Kleppe, R, Molmeux, I, and Khorana, H G (1971) Studies on polynucleotides XCVI. Repair replication of short synthetic DNAs as catalyzed by DNA polymerases J Mol Biol 56, 341–361PubMedCrossRefGoogle Scholar
  3. 3.
    Dragon, E. A, Spadoro, J. P., and MadeJ, R. (1993) Qualiy control of the polymerase chain reaction, in Diagnostrc Molecular Mlcrobiology Princzples and Applications (Persmg, D. H, Smith, T. F., Tenover, F. C., White, T. J., eds.), American Society for Microbiology, Washington DC, 160–168Google Scholar
  4. 4.
    McCreedy, B J. and Callaway, T. H. (1993)Laboratory design and workflow, in Diagnostic Molecular Microbiology Principles and Applications(Persing, D. H., Smith, T F, Tenover, F C., and Whtie, T J. eds), American Socreiy for Microbiology, Washmgton DC, 149–159.Google Scholar
  5. 5.
    Dieffenbach, C. W, Dragon, E. A., and Dveksler, G. S (1995) Setting up a PCR laboratory, in PCR Primer-A Laboratory Manual (Dieffenbach, C W and Dveksler, G. S., eds.), Cold Spring Harbor Laboratory, New York, 7–16.Google Scholar
  6. 6.
    Persmg, D. H and Cimino, G. D (1993) Amplitication product inactivation methods, in Diagnostic Molecular Microbiology. Principles and Applications (Persing, D. H., Smith, T. F., Tenover, F C., and White, T J., eds.), American Socreiy for Microbiology, Washington DC, 105–121Google Scholar
  7. 7.
    Hartley, J. L and Rashtchian, A(1995) Enzymatic control of carryover contamination in PCR, in PCR Primer A Laboratory ManuaI(Dieffenbach, C W. and Dveksler, G S, eds), Cold Spring Harbor Laboratory, New York, 23–29Google Scholar
  8. 8.
    Rychhk, W. (1995) Priming efficiency in PCR Biotechniques 18, 84–90.Google Scholar
  9. 9.
    Dieffenbach, C. W. and Dveksler, G S. (1995) Computer software for selecting primers, in PCR Primer A Laboratory Manual(Dieffenbach, C. W. and Dveksler, G. S, eds.), Cold Spring Harbor Laboratory, New York, 681–686.Google Scholar
  10. 10.
    Kwok, S., Chang, S-Y, Snmsky, J J., and Wang, A.(1995) Design and use of mismatched and degenerate primers, in PCR Primer A Laboratory Manual(Dieffenbach, C W and Dveksler, G S. eds.), Cold Spring Harbor Laboratory, New York 143–155Google Scholar
  11. 11.
    Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K, and Mattick, J. S. (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification Nucleic Acids Res 19, 4008.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruano, G., Fenton, W, and Kidd, K. K.(1989) Biphasic amplification of very dilute DNA samples via ‘booster’ PCR Nucleic Acids Res 17, 5407PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson, S M, McNerney, R, Nye, P M., Godfrey-Faussett, P D, Stoker, N G, and Voller, A. (1993) Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis J Clin Microbiol 31, 776–782PubMedGoogle Scholar
  14. 14.
    Wilson, P A, Phipps, J, Samuel, D, and Saunders, N. A(1996) Development of a simplified polymerase chain reaction-enzyme immunoassay for the detection of Chlamydia pneumoniae J Appl Bacteriol 80, 431–438Google Scholar
  15. 15.
    Erlich, H. A, Gelfand, D., and Sninsky, J. J (1991) Recent advances in the polymerase chain reaction Science 252, 1643–1651PubMedCrossRefGoogle Scholar
  16. 16.
    Trka, J., Divoky, V, and Lion, T (1995) Prevention of product carry-over by single tube two-round (ST-2R) PCR: application to BCR-ABL analysis in chronic myelogenous leukemia Nucleic Acids Res 23, 4735–4737.CrossRefGoogle Scholar
  17. 17.
    Sambrook, J, Fritsch, E F, and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual.Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  18. 18.
    Delwart, E. L., Shpaer, E. G, Louwagie, J., McCutchan, F E, Grez, M, Rubsamen-Waigmann, H., and Mullins, J I (1993) Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-l env genes. Science 262, 1257–1261PubMedCrossRefGoogle Scholar
  19. 19.
    Delwart, E L, Sheppard, H. W., Walker, B D, Goudsmit, J, and Mullins, J I(1994) Human immunodeficiency virus type 1 evolutron inn vivo tracked by DNA heteroduplex mobility assays. J Virol 68, 6672–6683PubMedGoogle Scholar
  20. 20.
    Novitsky, V, Arnold, C, and Clewley, J. P.(1996) Heteroduplex mobility assay for subtyping HIV-l improved methodology and comparison with phylogenetic analysis of sequence data. J Virol Meth 59, 61–72.CrossRefGoogle Scholar
  21. 21.
    Suggs, S V, Hirose, T M, Kawashima, E. H., Johnson, M J, Itakura, K., and Wallace, R. B.(1981) Use of synthetic oligonucleotides for the isolation of specific cloned DNA sequences, in Development Biology Using Purified Genes (Brown, D. and Fox, C. F., eds.), Academic, New York, 683–693Google Scholar
  22. 22.
    Altschul, S F., Boguski, M. S., Gish, W., and Wootton, J C. (1994) Issues in searching molecular sequence databases. Nature Genet. 6, 119–129PubMedCrossRefGoogle Scholar
  23. 23.
    Southern, E M(1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis J Mel Biol 98, 503–517CrossRefGoogle Scholar
  24. 24.
    Gibson, K. M, McLean, K A., and Clewley, J. P.(1991) A simple and rapid method for detecting human immunodeficiency virus by PCR. J Virol Meth. 32, 277–286CrossRefGoogle Scholar
  25. 25.
    Stuyver, L., Rossau, R., Wyseur, A., Duhamel, M., Vanderborght, B., VanHeuverswyn, H, and Maertens, G (1993) Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay J Gen Virol. 74, 1093–1102.PubMedCrossRefGoogle Scholar
  26. 26.
    Holland, P.M., Abramson, R. D., Watson, R, and Gelfand, D. H (1991) Detection of specific polymerase chain reaction product by utilizing the 5′ to 3′ exonuclease activity of Thermus aquaticus mDNA polymerase Proc Natl Acad Sci USA 88, 7276–7280PubMedCrossRefGoogle Scholar
  27. 27.
    Arnold, C and Clewley, J P(1996) From ABI Sequence Data to LASERGENE’ S EDITSEQ, in Sequence Data Analysis Guidebook (Swindell, S R, ed), (Walker, J. M., series, ed) Humana Press, Totowa, NJ, 65–74Google Scholar
  28. 28.
    Kwok, S, Mack, D H, Mullis, K. B., Poiesz, B., Ehrlich, G, Blair, D, Friedman Kien, A, and Sninsky, J J (1987) Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection J Virol 61, 1690–1694PubMedGoogle Scholar
  29. 29.
    Persing, D H.(1993) In vitro nucleic amplification techniques, in Diagnostic Molecular Microbiology Princilples and Apphcations(Persing, D H, Smith, T F., Tenover, F C, and White, T. J. eds.), American Society for Microbiology, Washington DC, 5l–87.Google Scholar
  30. 30.
    Landegren, U(1993) Molecular mechanics of nucleic acid sequence amplification Trends Genet 9, 199–204.Google Scholar
  31. 31.
    Dieffenbach, C. W. and Dveksler, G. S. (1995) Alternative amplification technology, in PCR Primer A Laboratory Manual(Dieffenbach, C. W and Dveksler, G. S., eds.), Cold Spring Harbor Laboratory, New York, 623–630.Google Scholar
  32. 32.
    Kwoh, D. Y., Davis, G R, Whitfield, H. L., Chappelle, L, DiMichele, L J., and Gingeras, T R.(1989) Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format.Proc Natl Acad Sci USA 86, 1173–1177PubMedCrossRefGoogle Scholar
  33. 33.
    Gingeras, T. R, Prodanovich, P, Latimer, T, Guatelli, J. C., Richman, D D., and Barringer, K J(1991) Use of self-sustained sequence replication ampliflcation reaction to analyze and detect mutations in zidovudme-resistant human inmunodeficiency virus. J. Infect Drs. 164, 1066–1074.Google Scholar
  34. 34.
    Gingeras, T R, Biery, M, Goulden, M, Ghosh, S. S., and Fahy, E. (1995) Optimization and characterization of 3SR-based assays, in PCR Primer. A Laboratory Manual(Dieffenbach, C W and Dveksler, G. S., eds.), Cold Spring Harbor Laboratory, New York, 653–666.Google Scholar
  35. 35.
    Kievits, T., van Gemen, B, vanStrijp, D, Schukkink, R., Dircks, M., Adriaanse, H, Malek, L, and Sooknanen, R (1991)NASABTM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol. Meth 35 273–286CrossRefGoogle Scholar
  36. 36.
    Spargo, C. A., Haaland, P D., Jurgensen, S R., Shank, D D., and Walker, G T (1993) Chemiluminescent detection of strand displacement amplified DNA from species comprisig the Mycobacterium tuberculosis complex.Mol Cell Probes 7, 395–404.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu, D Y and Wallace, R. B. (1989) The ligation amplification (LAR)-amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569PubMedCrossRefGoogle Scholar
  38. 38.
    Bassiri, M, Hu, H Y, Domeika, M. A., Burczak, J., Svensson, L o, Lee, H H, and Mardh, P A(1995)Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction J Clin. Microbiol 33, 898–900PubMedGoogle Scholar
  39. 39.
    Frenkel, L M., Wagner, L E, Atwood, S. M., Cummins, T J, and Dewhurst, S (1995) Specific, sensitive, and rapid assay for human immunodeficiency virus type 1 pol mutations assoctated with resistance to zidovudine and didanosine J Clin Microbiol 33, 342–347.PubMedGoogle Scholar
  40. 40.
    Wiedmann, M., Barany, F, and Batt, C A. (1995) Ligase chain reaction, in PCR Primer A Laboratory Manual(Dieffenbach, C W and Dveksler, G S, eds), Cold Spring Harbor Laboratory, New York, 63l–652.Google Scholar
  41. 41.
    Chan, C Y, Lee, S. D, Hwang, S J., Lu, R H, Lu, C. L, and Lo, K. J (1995) Quantitative branched DNA assay and genotyping for hepatitis C virus RNA in Chinese patients with acute and chronic hepatitis C J Infect Dis 171, 443–446PubMedGoogle Scholar
  42. 42.
    Urdea, M S, Kolberg, J., Clyne, J., Running, J. A., Besemer, D., Warner, B., and Sanchez-Pescador, R (1989) Application of a rapid non-radioisotopic nucleic acid analysis system to the detection of sexually transmitted disease-causing organisms and their associated antimicrobial resistances. Clin. Chem 35, 157l–l575Google Scholar
  43. 43.
    Miele, E. A., Mills, D. R, and Kramer, F. R (1983) Autocatalytic replication of a recombinant RNA J Mol Biol 171, 203–209CrossRefGoogle Scholar
  44. 44.
    Lizardi, P M, Guerra, C E., Lomeh, H., Tussle-Luna, I, and Kramer, F. R(1988) Exponential amplification of recombinant-RNA hybridisation probes. Biotechnology 6, 1197–1202CrossRefGoogle Scholar
  45. 45.
    Shah, J. S., Liu, J., Buxton, D., Hendricks, A., Robinson, L., Radcliffe, G., King, W, Lane, D, Olive, D. M, and Klinger, J. D. (1995) Q-beta rephcase-amplified assay for detection of Mycobacterium tuberculosisdirectly from clinical specimens. J Clin Microbiol 33, 1435–1441.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Nick A. Saunders
    • 1
  • Jonathan P. Clewley
    • 1
  1. 1.Molecular Biology UnitCentral Public Health LaboratoryLondonUK

Personalised recommendations