Molecular Approaches for the Detection and Identification of β-Lactamases

  • David J. Payne
  • Christopher J. Thomson
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 15)


β-lactamases confer resistance to β-lactam antibiotics, which are the most widely used family of antibiotics. It is, therefore, essential that one can identify the production of β-lactamases by clinical isolates and have effective ways of distinguishing the different enzymes. This is necessary for epidemiologic surveys, predicting future resistance trends, and to ensure that patients receive the appropriate β-lactam or alternative therapy.


Polymerase Chain Reaction Polymerase Chain Reaction Product Clinical Isolate Clavulanic Acid Polymerase Chain Reaction Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Medeiros A. A (1984) β-lactamases Brit Med Bull 40, 19–27Google Scholar
  2. 2.
    Payne, D J. (1993) Metallo-β-lactamases: a new therapeutic challenge J Med Microbiol. 39, 93–99PubMedCrossRefGoogle Scholar
  3. 3.
    BSAC Working party (1991) A guide to sensitivity testing J Antimicrob Chemother. 27, 1–50.CrossRefGoogle Scholar
  4. 4.
    Dubois, S. K, Marriott, M S, and Amyes, S.G.B.( 1995) TEM and SHV-derived extended-spectrum β-lactamases, relationship between selection, structure and function. J Antimicrob Chemother 35, 7–22.CrossRefGoogle Scholar
  5. 5.
    Thomson, C. J. and Amyes, S. G. B (1993) Selection of variants of the TEM-1 beta-lactamase, encoded by a plasmid of clinical origin, with increased resistance to beta-lactamase inhibitors J Antimicrob Chemother 31, 655–664PubMedCrossRefGoogle Scholar
  6. 6.
    Payne, D J, Cramp, R, Winstanley, D. J, and Knowles, D (1994) Comparativeactivities of clavulanic acid, sulbactam and tazobactam against clinically important β-lactamases. Antimicrob Agents Chemother 38, 767–772PubMedGoogle Scholar
  7. 7.
    Jarher, V., Nicolas, M. H., Fournier, G, and Philippon, A. (1988) Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae, hospital prevalence and susceptibility patterns Rev Infect Dis. 10, 867–878CrossRefGoogle Scholar
  8. 8.
    Bolstrom, A., Karlsson, A., and Mills, K. (1995) Detection of ESBLs Using a new E-test strip Abstracts of the Seventh European Congress of Clinical Microbiology and Infectious Diseases pp 49–50.Google Scholar
  9. 9.
    Thomson, C. J, Miles, R. S., and Amyes, S. G. B. (1995) Sensitivity testing with clavulanic acid, fixed concentration versus fixed ratio Antimicrob Agents Chemother. 39, 259l–2592Google Scholar
  10. 10.
    Towner, K. J. and Cockayne, A. (1993) Identification by nucleic acid hybridization techniques, in Molecular Methods for Microbial Identification and Typing. Chapman and Hall, London, pp.64–92.Google Scholar
  11. 11.
    Thomson, C J. and Amyes, S G. B (1992) TRC-1, emergence of a clavulanic acid resistant TEM beta-lactamase in a clinical strain FEMS Microbiol Lett 91, 113–118.Google Scholar
  12. 12.
    Meinkoth, J. and Wahl, G (1984) Hybridization of nucleic acids immobilized on solid supports Analy Biochem 138, 267–284CrossRefGoogle Scholar
  13. 13.
    Arlet, G. and Philippon, A. (1991) Construction by polymerase chain reaction and intragenic DNA probes for three main types of transferableβ-lactamases (TEM, SHV, CARB). FEMS Microbiol Lett 81, 57–60.Google Scholar
  14. 14.
    Arlet, G., Rouveau, M, Fournier, G, Lagrange, P. H, and Philippon, A. (1993) Novel, plasmid encoded, TEM-derived extended-spectrum β-lactamase in Klebstella pneumoniae conferring higher resistance to aztreonam than to extended-spectum cephalosporins Antimicrob. Agents Chemother 37, 2020–2023PubMedGoogle Scholar
  15. 15.
    Ouellette, M., Rossi, J. J, Bazin, R. and Roy, P. H. (1987) Oligonucleotide probes for the detection of TEM-1 and TEM-2 β-lactamase genes and their transposons Can J Microbiol 33, 205–211.PubMedCrossRefGoogle Scholar
  16. 16.
    Urban, C., Meyer, K S., Mariano, N., Rahal, J J, Flamm, R., Rasmussen, B. A., and Bush, K. (1994) Identification of TEM-26 β;-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae Antimicrob Agents Chemother 38, 392–395Google Scholar
  17. 17.
    Bradford, P. A., Urban, C, Jaiswal, A., Mariano, N., Rasmussen, B. A., Projan, S. J., Rahal, J. J, and Bush, K (1995) SHV-7, a novel cefotaxime-hydrolysing β-lactamase identified in Escherichia coli isolates from hospitalised nursing home patients. Antimicrob Agents Chemother. 39, 899–905.PubMedGoogle Scholar
  18. 18.
    Levesque, R C, Medeiros, A. A., and Jacoby, G. A. (1987) Molecular cloning and DNA homology of plasmid mediated β-lactamase genes Mol Gen Genet 206, 252–258.PubMedCrossRefGoogle Scholar
  19. 19.
    Rice, L. B., Willey, S. H., Papanicolaou, G. A., Medeiros, A A, Eliopoulos, G. M., Moellering, R. C, and Jacoby, G. A. (1990) Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility Antimicrob. Agents Chemother. 34, 2193–2199.PubMedGoogle Scholar
  20. 20.
    Pornull, K. J., Goransson, E., Rytting, A., and Dornbusch, K. (1993) Extended-spectrum β-lactamases in Escherichia coli and Klebsiella spp. in European septicaemia isolates. J Antimicrob Chemother 32, 559–570PubMedCrossRefGoogle Scholar
  21. 21.
    Houovinen, S., Huovinen, P, and Jacoby, G A (1988) Detection of plasmid-mediated β-lactamases with DNA probes. Antimicrob. Agents Chemother 32, 175–179.Google Scholar
  22. 22.
    Tenover, F. C., Huang, M. B., Rasheed. J. K., and Persing D H. (1994) Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluidsamples containing Haemophilus influenzae. J Clin Microbiol. 32, 2729–2737.PubMedGoogle Scholar
  23. 23.
    Arlet, G., Rouveau, M, Bengoufa, D, Nicolas, M. H, and Philippon, A (1991) Novel transferable extended spectrum β-lactamase (SHV-6) from klebsiella conferring selective resistance to ceftazidime FEMS Microbiol Lett 81, 57–60.Google Scholar
  24. 24.
    M’Zali, F., Gascoyne-Binzi, D M., Heritage, J, and Hawkey, P M (1996) Detection of mutations conferring extended-spectrum activity on SHV β-lactamases using polymerase chain reaction single strand conformational polymorphism (PCR-SSCP) J Antimicrob Chemother 37, 797–802PubMedCrossRefGoogle Scholar
  25. 25.
    Shlaes, D. M, Currie-McCumber, C, Hull, A, Behlau, I., and Kron, M. (1990) OHIO-1 β-lactamase is part of the SHV-1 family Antimicrob. Agents Chemother 34, 1570–1576PubMedGoogle Scholar
  26. 26.
    Ouellette, M, Paul, G C, Philippon, A M., and Roy, P H. (1988) Oligonucleotide probes (TEM-1, OXA-1) verus isoelectric focusing in β-lactamase charactertsation of 114 resistant strains. Antimicrob Agents Chemother 32, 397–399PubMedGoogle Scholar
  27. 27.
    Juteau, M., Deschaseaux, M L, Royez, M, Mougin, C, Cooksey, R C, Michel-Briand, Y, and Adessi, G L. (1987) Molecular hybridization verus isoelectric focusing to determine TEM-type β-lactamases in gram-negative bacteria Antimicrob Agents Chemother 31, 300–305Google Scholar
  28. 28.
    Ito, H, Arakawa, Y, Ohsuka, S, Wacharotayankun, R, Kato, N, and Ohta, N. (1995) Plasmid dissemination of the metallo-β-lactamase genebla IMP among clinically isolated Serratia marcescens Antimicrob Agents Chemother 39, 824–829PubMedGoogle Scholar
  29. 29.
    Podglagen, I, Breuil, J Bordon, F, Gutmann, L, and Collatz, E. (1992) A silent carbapenemase gene in strains of Bacteroides fragilis can be expressed after a one-step mutation. FEMS Microbiol Lett 91, 2l–30Google Scholar
  30. 30.
    Tzouvelekis, L. S, Tzelepi, E, Mentis, A F., and Tsakis, A (1993) Identification of a novel plasmid mediated β-lactamase with chromosomal cephalospormase characteristics from Klebsiella pneumoniae J Antimicrob Chemother 31, 645–654PubMedCrossRefGoogle Scholar
  31. 31.
    Sakurai, Y, Tsukamoto, K., and Sawai, T. (1991) Nucleotide sequence and characterisation of a carbacillin hydrolysing penicillinase gene from Proteus mirabilis J Bacteriol 173, 7038–7041PubMedGoogle Scholar
  32. 32.
    Zwadyk, P., Cooksey, R. C, and Thornsberry, C (1986) Commercial detection methods for biotinylated gene probes, comparison with 32P-labeled DNA probes Curr Microbiol 14, 95–100CrossRefGoogle Scholar
  33. 33.
    Gallego, L, Umaran, A., Garaizar, J, Colom, K, and Cisterna, R. (1990) Digoxigenin-labelled DNA probe to detect TEM type β-lactamases J Microbiol Meth. 11, 26l–267CrossRefGoogle Scholar
  34. 34.
    Adrian, P. V, Thomson, C J., Klugman, K P, and Amyes, S G B (1995) Prevalence and genetic location of non-transferable trimethoprim resistant dihydrofolatem reductase genes in South African commensal faecal isolates. Epidemiol infect 115, 255–267PubMedCrossRefGoogle Scholar
  35. 35.
    Brown, J. C, Thomson, C. J., and Amyes, S G. B (1996) Mutations of the gyrA gene of clinical isolates of Salmonella typhimurium and three other Salmonella species leading to decreased susceptibilities to 4-quinolone drugs. J. Antimicrob Chemother 37, 35l–356Google Scholar
  36. 36.
    Vila, J., Ruiz, R., Goni, P, Marcos, A, and Deanta, T. J (1995) Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannu Antimicrob Agents Chemother 39, 1201–1203.PubMedGoogle Scholar
  37. 37.
    Persing, D. H. (1993) In vitro nucleic acid amplification techniques, in Diagnostic Molecular Microbiology Principles and Applications, (Persing, D H, Smith, T F., Tenover, F. C., and White, T J., eds.), American Society for Microbiology, Washington, DC, pp 5l–87Google Scholar
  38. 38.
    Brakstad, 0 G, Aasbakk, K., and Maeland, J A. (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplication of the nuc gene. J Clin Microbiol 30, 1654–1660PubMedGoogle Scholar
  39. 39.
    Shirai, H, Nishibuchi, M., Ramamurthy, T., Bhattacharya, S. K., Pal, S. C., and Takeda, Y (1991) Polymerase chain reaction for detection of cholera enterotoxin operon of Vibrio cholerae J Clin Microbiol 29, 2517–2521.PubMedGoogle Scholar
  40. 40.
    Hunt, J. M., Roberts, G D, Stockman, L., Felmlee, T A., and Persing, D H(1994) Detection of a genetic locus encoding resistance to rifampicin in mycobacteria1 cultures and in clinical specimens. Diagn. Microbial Infect. Dis 18, 219–227CrossRefGoogle Scholar
  41. 41.
    Telenti, A, Imboden, F, Merchesi, F., Schmidheini, T., and Bodmer, T. (1993) Direct, automated detection of rifampicin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand confirmation polymorphism analysis Antimicrob. Agents Chemother 37, 2054–2058PubMedGoogle Scholar
  42. 42.
    Jones, M. E., Avison, M B, Damdinsuren, E., MacGowan, A. P., and Bennett, P M. (1994) Heterogeneity at the β-lactamase structural gene ampC amonst Citrobacter spp. assessed by polymerase chain reaction analysis, potential for typing at the molecular level. J Med Microbiol 41, 209–214.PubMedCrossRefGoogle Scholar
  43. 43.
    Payne, D J, Marriott, M S, and Amyes, S. G B. (1990) Characterisation of a unique ceftazidime hydrolysing β;-lactamase, TEM-E2 J Med Microbiol 32, 131–134PubMedCrossRefGoogle Scholar
  44. 44.
    Henquell, C., Chanal, C., Sirot, D, Labia, R., and Sirot, J (1995) Molecular characterisation of nine different types of mutants among 107 inhibitor resistant TEM β-lactamases from clinical isolates of Escherichia coli Antimicrob Agents Chemother 39, 427–430PubMedGoogle Scholar
  45. 45.
    Chanal, C, Poupart, M-C, Sirot, D, Labia, R, Sirot, J., and Cluzel, R. (1992) Nucleotide sequences of CAZ-2, CAZ-6 and CAZ-7 β-lactamase genes. Antimicrob Agents Chemother 36, 1817–1820PubMedGoogle Scholar
  46. 46.
    Malibat, C and Courvalin, P (1990) Development of‘oligotyping’ for characterisation and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae Antimicrob Agents Chemother 34, 2210–2216.Google Scholar
  47. 47.
    Ambler, R. P. (1980) The structure of β-lactamases. Phil Trans Royal Soc Lon B289, 32l–331.Google Scholar
  48. 48.
    Tham, T. N., Mabilat, C, Courvalin, P., and Guesdon, J-L (1990) Biotinylated oligonucleotide probes for the detection and the characterisation of TEM-type extended broad spectrum β-lactamases in Enterobacteriaceae FEMS Microbiol Lett 69, 109–116.Google Scholar
  49. 49.
    Hultman, T, Bergh, S, Moks, T, and Uhlen, M(1991) Bidirectional solid-phase sequencing of in vitro-amplified plasmid DNA Biotechniques 10, 84–93.PubMedGoogle Scholar
  50. 50.
    Dynal (1995) Biomagnetic Techniques in Molecular Biology DynalA S., Oslo, Norway.Google Scholar
  51. 51.
    Jouvenot, M., Deschaseaux, M L0, Royez, M, Mougin, C, Cooksey, R C, Michel-Briand, Y., and Adessi, G. L (1987) Molecular hybridization verus isoelectric focusing to determine TEM-type β-lactamases in Gram-negative bacteria. Antimicrob Agents Chemother 31, 300–305.PubMedGoogle Scholar
  52. 52.
    Podglagen, I., Breuil, J, and Collatz, E. (1994) Insertion of a novel DNA sequence IS1186, upstream of the silent carbapenemase gene cfiA promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis Molecular Microbiol 12, 105–114.CrossRefGoogle Scholar
  53. 53.
    Bush, K., Jacoby, G A., and Medeiros, A. A (1995) A functional classification scheme for β-lactamases and its correlation with molecular structure Antimicrob Agents Chemother 39, 1211–1233PubMedGoogle Scholar
  54. 54.
    Giwercman, B, Rasmussen, J W, Cioufu, O., Clemmentintsen, I., Schumacher, H, and Hoiby, N (1994) Antibodies against chromosomal β-lactamase Antrmicrob Agents Chemother 38, 2306–2310Google Scholar
  55. 55.
    Morin, C. J, Patel, P C, Levesque, R C., and Letarte, R (1987) Monoclonal antibodies to TEM-1 plasmid mediated β-lactamase Antimicrob Agents Chemother 12, 461–464Google Scholar
  56. 56.
    Curran, R, Talbot, D. C S, and Towner, K. (1996) A rapid immunoassay method for the direct detection of PCR products, application to detection of TEM β-lactamase genes. J Med Microbiol 45, 76–78PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • David J. Payne
    • 1
  • Christopher J. Thomson
    • 2
  1. 1.Anti-Infective Research (UP1345)SmithKline Beecham PharmaceuticalsCollegeville
  2. 2.Department of Medical MicrobiologyUniversity of Edinburgh Medical SchoolEdinburghUK

Personalised recommendations