Skip to main content

Quantitative and Discriminative Detection of Individual HIV-1 mRNA Subspecies by an RNase Mapping Assay

  • Protocol
PCR in Bioanalysis

Part of the book series: Methods In Molecular Medicine™ ((MIMB,volume 92))

  • 669 Accesses

Abstract

In addition to the Gag, Pol, and Env structural proteins, HIV-1 encodes at least six regulatory proteins: Tat, Rev, Nef, Vif, Vpr, and Vpu. All HIV-I proteins are encoded by overlapping reading frames and are expressed through the complex alternative splicing of a single precursor RNA leading to three major RNA classes (8-8): an unspliced class which includes both genomic RNA and gag-pol mRNA; a singly spliced class that includes mRNAs coding for Env, Vpu, Vif, Vpr, and a truncated form of Tat protein; and a multiply-spliced class that includes mRNAs coding for the regulatory proteins Tat, Rev, and Nef (Fig. 1). The function of the regulatory proteins Tat, Rev, Nef, Vif, Vpr, and Vpu has not yet been fully elucidated. Nevertheless, they seem to play specific roles during the different steps of the HIV-1 replication cycle (9-11). For this reason, the detection of mRNA species encoding these proteins at different steps of the virus replication cycle will provide important information about the function of these proteins. In order to obtain both a quantitative and qualitative detection of these mRNAs, we used a ribonuclease protection assay. Ribonuclease protection assays are commonly used for the detection and quantification of mRNAs (12,13) and are well-suited for mapping the position of internal and external junctions in mRNAs (14,15). In addition, as the hybridization takes place in liquid conditions, this technique is more sensitive than other quantitative methods of detection of RNAs such as Northern blotting (16). Our assay uses a DNA template specific of the HIV-1 strain to be investigated.

(A) HIV-1 mRNA splicing pattern: HIV-1 genomic organization and the different exons are shown at the top. HIV-1 major splice sites are indicated and the three mRNA classes (unspliced, singly spliced, and multiply spliced) are represented. Both singly spliced and multiply spliced mRNA species contain a splice from the 5′ splice site d1 to one of the 3′ splice sites a1-a6. Multiply spliced mRNAs contain an additional splice from the 5′ splice site d4 to the 3′ splice site a10. Correspondence of each coding exon to its encoded protein(s) is given at the right of the panel referring to Schwartz’s nomenclature. (B) Enlargement of the HIV-1 genome central region amplified for T7 polymerase template construction. Major splice acceptors used for singly spliced vif, vpr, tat, vpu/env, and multiply spliced vpr, tat, rev, nef, tev mRNA coding exons are indicated at the top. Horizontal arrows indicate RT-PCR primer pair positions used for vpr cDNA amplification. (C) vpr cDNA template. This region was obtained by RT-PCR amplification of vpr mRNA with the primers pair 619-512. Vertical arrows indicate restriction enzyme site positions used for template cloning or vector linearization. Restriction enzyme sites provided by RT-PCR primers sequence are indicated by an asterisk (*). Other sites are internal in the HIV-1/HXB2c sequence. The box above the scheme represents sequences from the pGEM vector. Numbers in brackets indicate nucleotide positions referring to the HXB2 CAP site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furtado, M. R., Balachandran, R., Gupta, P., and Wolinsky, S. M. (1991) Analysis of alternatively spliced human immunodeficiency virus type-1 mRNA species, one of which encodes a novel tat-env fusion protein. Virology 185, 258–270.

    Article  PubMed  CAS  Google Scholar 

  2. Robert-Guroff, M., Popovic, M., Gartner, S., Markham, P., and Gallo, R. C. (1990) Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J. Virol. 64, 3391–3398.

    PubMed  CAS  Google Scholar 

  3. Guatelli, J. C., Gingeras, T. R., and Richman, D. D. (1990) Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of culured cells. J. Virol. 64, 4093–4098.

    PubMed  CAS  Google Scholar 

  4. Schwartz, S., Felber, B. K., Benko, D. M., Fenyö, E. M., and Pavlakis, G. N. (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J. Virol. 64, 2519–2529.

    PubMed  CAS  Google Scholar 

  5. Benko, D. M., Schwartz, S., Pavlakis, G. N., and Felber, B. K. (1990) A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins. J. Virol. 64, 2505–2518.

    PubMed  CAS  Google Scholar 

  6. Schwartz, S., Felber, B. K., Fenyö, E. M., and Pavlakis, G. N. (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple biscistronic mRNAs. J. Virol. 64, 5448–5456.

    PubMed  CAS  Google Scholar 

  7. Schwartz, S., Felber, B. K., and Pavlakis, G. N. (1991) Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology 183, 677–686.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, J., Azad, A., and Deacon, N. (1992) Identification of two novel human immunodeficiency virus type 1 splice acceptor sites in infected T cell lines. J. Gen. Virol. 73, 1825–1828.

    Article  PubMed  CAS  Google Scholar 

  9. Antoni, B. A., Stein, S. B., and Rabson, A. B. (1994) Regulation of human immunodeficiency virus infection: implications for pathogenesis. Adv. Virus Res. 43, 53–145.

    Article  PubMed  CAS  Google Scholar 

  10. Cullen, B. R. (1992) Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol. Rev. 56, 375–394.

    PubMed  CAS  Google Scholar 

  11. Steffy, K. and Wong-Staal, F. (1991) Genetic regulation of human immunodeficiency virus. Microbiol. Rev. 55, 193–205.

    PubMed  CAS  Google Scholar 

  12. Roller, R. J., Kinloch, R. A., Hiroaka, B. Y., Li, S. S.-L., and Wassarman, P. M. (1989) Gene expression during mammalian oogenesis and early embryogenesis: quantification of three messenger RNAs abundant in fully grown mouse oocytes. Development 106, 251–261.

    PubMed  CAS  Google Scholar 

  13. Anonymous (1993) HIV seroconversion after occupational exposure despite early prophylactic zidovudine therapy. Lancet 341, 1077,1078.

    Google Scholar 

  14. Kekule, A. S., Lauer, U., Meyer, M., Caselmann, W. H., Hofschneider, P. M., and Koshy, R. (1990) The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature 343, 457–461.

    Article  PubMed  CAS  Google Scholar 

  15. Calzone, F. J., Britten, R. S., and Davidson, E. H. (1987) Mapping of gene transcripts by nuclease protection assays and cDNA primer extention. Meth. Enzymol. 152, 611–632.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, J. J. and Costlow, N. A. (1987) A molecular titration assay to measure transcript prevalence levels. Meth. Enzymol. 152, 633–648.

    Article  PubMed  CAS  Google Scholar 

  17. Ciminale, V., Pavlakis, G. N., Derse, D., Cunningham, C. P., and Felber, B. K. (1992) Complex splicing in the human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins produced by HTLV type 1. J. Virol. 66, 1737–1745.

    PubMed  CAS  Google Scholar 

  18. Park, I. W., Steen, R., and Li, Y. (1991) Characterization of multiple mRNA species of simian immunodeficiency virus from macaques in a CD4+ lymphoid cell line. J. Virol. 65, 2987–2992.

    PubMed  CAS  Google Scholar 

  19. Unger, R. E., Stout, M. W., and Luciw, P. A. (1991) Simian immunodeficiency virus (SIVmac) exhibits complex splicing for tat, rev, and env mRNA. Virology 182, 177–185.

    Article  PubMed  CAS  Google Scholar 

  20. Muranyi, W. and Flügel, M. (1991) Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J. Virol. 65, 727–735.

    PubMed  CAS  Google Scholar 

  21. Folks, T. M., Justement, J. S., Kinter, A., Schnittman, S. M., Orenstein, J., Poli, G., and Fauci, A. S. (1988) Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J. Immunol. 140, 1117–1122.

    PubMed  CAS  Google Scholar 

  22. Mallet, F., Oriol, G., Mary, C., Verrier, B., and Mandrand, B. (1995) Continuous RT-PCR using AMV-RT and Taq DNA polymerase: characterization and comparison to uncouples procedures. BioTechniques 18, 678–687.

    PubMed  CAS  Google Scholar 

  23. Hod, Y. (1992) A simplified ribonuclease protection assay. BioTechniques 13, 852–854.

    PubMed  CAS  Google Scholar 

  24. Mary, C., Telles, J. N., Cheynet, V., Oriol, G., Mallet, F., Mandrand, B., and Verrier, B. (1994) Quantitative and discriminative detection of individual HIV-1 mRNA subspecies by an RNAse mapping assay. J. Virol. Meth. 49, 9–23.

    Article  CAS  Google Scholar 

  25. Ma, X., Sakai, K., Sinangil, F., Golub, E., and Volsky, D. J. (1990) Interaction of a noncytopathic human immunodeficiency virus type 1 (HIV-1) with target cells: efficient virus entry followed by delayed expression of its RNA and protein. Virology 176, 184–194.

    Article  PubMed  CAS  Google Scholar 

  26. Klotman, M. E., Kim, S., Buchbinder, A., DeRossi, A., Baltimore, D., and Wong-Staal, F. (1991) Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infecti on of lymphocytes and monocytes. Proc. Natl. Acad. Sci. USA 88, 5011–5015.

    Article  PubMed  CAS  Google Scholar 

  27. Kim, S., Byrn, R., Groopman, J. E., and Baltimore, D. (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J. Virol. 63, 3708–3713.

    PubMed  CAS  Google Scholar 

  28. Chirgwin, J. M., Przybyla, A. E., Macdonald, R. J., and Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriches in ribonuclease. Biochemistry 18, 5294,5295.

    Article  Google Scholar 

  29. Kingston, R. E., Chomczynski, P., and Sacchi, N. (1991) Guanidium method for total RNA preparation, in Current Protocols in Molecular Biology, vol. 1 (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Wiley, Boston, p. 4.2.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Mary, C., Akaoka, H., Verrier, B. (1998). Quantitative and Discriminative Detection of Individual HIV-1 mRNA Subspecies by an RNase Mapping Assay. In: Meltzer, S.J. (eds) PCR in Bioanalysis. Methods In Molecular Medicine™, vol 92. Humana Press. https://doi.org/10.1385/0-89603-497-6:89

Download citation

  • DOI: https://doi.org/10.1385/0-89603-497-6:89

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-497-6

  • Online ISBN: 978-1-59259-575-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics