Skip to main content

Autoradiographic Visualization in Brain of Receptor-G Protein Coupling Using [35S]GTPγS Binding

  • Protocol
Receptor Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 83))

Abstract

Localization of receptors in brain sections using autoradtographlc detection of radioligand binding has been an important technique in the neuroanatomical identification of a large number of neurotransmitter receptors. However, receptor autoradiography provides little information regarding the functional relevance of these sites and, in fact, does not establish which of the labeled receptor sites are actually coupled to intracellular signaling mechanisms. Fortunately, with the family of G protein-coupled receptors (GPCR), signal transduction is mediated at the level of the transducer itself (i.e., at the point at which receptors activate the α-subunits of G proteins to bind guanosine 5′-triphosphate [GTP]). The development of an assay for agonist-stimulated [35S]guanylyl-5′-O-(γ-thio)-triphosphate ([35S]GTPγS) binding, originally developed for receptors in isolated membranes, has provided an excellent opportunity to apply this process to brain sections, thus allowing the visualization of receptor-activated G proteins in specific brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhar M. J. and Yamamura H. I. (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature 253, 560,561.

    Article  CAS  PubMed  Google Scholar 

  2. Pert C. B., Kuhar M. J., and Snyder S. H. (1975) Autoradiographic localization of the opiate receptor in rat brain. Life Sci. 16, 1849–1854.

    Article  CAS  PubMed  Google Scholar 

  3. Young W. S and Kuhar M J (1979) A new method for receptor autoradtography: [3H]opiotd receptors in rat brain Brain Res. 179, 255–270.

    Article  CAS  PubMed  Google Scholar 

  4. Herkenham M. and Pert C. B (1980) In vitro autoradrography of opiate receptors in rat brain suggests loci of “optatergic” pathways. Proc. Nat1 Acad Scl USA 71, 5532–5536.

    Article  Google Scholar 

  5. Pert C. B. and Snyder S. H. (1973) Opiate receptor: Demonstration in nervous tissue. Science 179, 101l–1014.

    Article  Google Scholar 

  6. Bu-nbaumer L., Abramowitz J., and Brown A. M. (1990) Receptor-effector coupling by G proteins. Blochim. Bzophys Acta 1031, 163–224.

    Google Scholar 

  7. Gilman A. G (1987) G protems: transducers of receptor-generated signals. Annu Rev. Blochem. 56, 615–649.

    Article  CAS  Google Scholar 

  8. Hildebrandt J D., Sekura R D., Codma J., Iyengar R., Manclark C. R, and Bnnbaumer L. (1983) Stimulatron and inhtbition of adenylyl cyclases mediated by distmct regulatory proteins Nature 302, 706–709.

    Article  CAS  PubMed  Google Scholar 

  9. Brown A M. and Brrnbaumer L. (1990) Ionic channels and then regulation by G protein subunits. Annu Rev Physlol 52, 197–213

    Article  CAS  Google Scholar 

  10. Childers S. R (1991) Oproid receptor-coupled second messengers. Life Sci 48, 1991–2003.

    Article  CAS  PubMed  Google Scholar 

  11. Asano T., Pedersen S. E., Scott C. W., and Ross E. M. (1984) Reconstitution of catecholamine-stimulated binding of guanosme 5′-O-(3-throtriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase Biochemistry 23, 5460–5467.

    Article  CAS  PubMed  Google Scholar 

  12. Gierschik P., Moghtader R., Straub C., Dieterich K, and Jakobs K. H (1991) Srgnal amphficatron in HL-60 granulocytes. evidence that the chemotactic peptide receptor catalytically activates guanme-nucleotide-binding regulatory protems In native plasma membranes. Eur J. Bzochem 197, 725–732.

    Article  CAS  Google Scholar 

  13. Cassel D. and Selinger Z. (1976) Catechoiamme-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 452, 538–551

    CAS  PubMed  Google Scholar 

  14. Koski G and Klee W. A (1981) Opiates inhibit adenylate cyclase by stimulation of GTP hydrolysis. Proc. Nat1 Acad. SCL USA 78, 4185–4189.

    Article  CAS  Google Scholar 

  15. Selley D. E. and Bidlack J M. (1992) Effects of β-endorphin on Mu and Delta optoid receptor-coupled G protein activity: Low-Km GTPase studies. J Pharmacol. Exp Ther 263, 99–104.

    CAS  PubMed  Google Scholar 

  16. Selley D. E., Breivogel C. S., and Childers S. R. (1993) Modtfication of oprotd receptor-G-protein function by low pH pretreatment of membranes from NG108-15 cells: Increase in opiotd agonist efficacy by decreased inactivation of G-proteins. Mel Pharmacol 44, 73l–741

    Google Scholar 

  17. Kurose H., Katada T., Haga T., Haga K., Ichiyama A., and UI M. (1986) Functional interaction of purified muscarmic receptors with purified mhibitory guanine nucleotide regulatory proteins reconstituted in phosphohpid vesrcles. J. Biol Chem. 261, 6423–6428.

    CAS  PubMed  Google Scholar 

  18. Florio V A. and Stemwers P. C. (1989) Mechanisms of muscarimc receptor action on G0, in reconstituted phosphohpid vesicles. J Biol Chem. 264, 3909–3915.

    CAS  PubMed  Google Scholar 

  19. Hilf G., Gierschik P., and Jakobs K. H. (1989) Muscarmic acetylcholme receptor-stimulated binding of guanosine 5′-0-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur J. Biochem 186, 725–731.

    Article  CAS  PubMed  Google Scholar 

  20. Lorenzen A., Fuss M., Vogt H., and Schwabe U. (1993) Measurement of guarune nucleotide-bindmg protein activation by A1 adenosme receptor agonists in bovine brain membranes stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding. Mel Pharmacol 44, 115–123

    CAS  Google Scholar 

  21. Lazareno S., Fames T., and Birdsall N. J M. (1993) Pharmacological charactertzation of guanme nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors MI-M4 Life sci 52, 449-56.

    Google Scholar 

  22. Traynor J. R. and Nahorski S. R. (1995) Modulation by µ-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SYSY cells. Mol Pharmacol 47, 848–854

    CAS  PubMed  Google Scholar 

  23. Tian W.-N., Duzic E., Lamer S. M., and Deth R. C (1994) Determinants of α2-adrenergic receptor activation of G proteins: evidence for a precoupled receptor/G protein state Mol Pharmacol. 45, 524–531.

    CAS  PubMed  Google Scholar 

  24. Koski G., Streaty R. A., and Klee W. A. (1982) Modulation of sodium-sensitive GTPase by partial opiate agonists. J. Bzol. Chem. 257, 14,035–14,040.

    CAS  Google Scholar 

  25. Gierschik P, Sidiropoulos D., Steisslmger M., and Jakobs K. H. (1989) Na+ regulation of formyl peptide receptor-mediated signal transduction in HL60 cells. Evidence that the cation prevents activation of the G-protein by unoccupted receptors. Eur. J Pharmacol. 172, 481–492

    Article  CAS  PubMed  Google Scholar 

  26. Costa T., Lang J, Gless C., and Herz A. (1990) Spontaneous association between opioid receptors and GTP-binding proteins in native membranes: specific regulation by antagonists and sodium ions. Mol. Pharmacol 37, 383–394.

    CAS  PubMed  Google Scholar 

  27. Brandt D R. and Ross E. M (1986) Catecholamme-stimulated GTPase cycle: Multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J Biol Chem 261, 1656–1664

    CAS  PubMed  Google Scholar 

  28. Sim L. J., Selley D. E., and Childers S. R. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc. Natl. Acad Sci USA 92, 7242–7246.

    Article  CAS  PubMed  Google Scholar 

  29. Goodman R. R., Snyder S H., Kuhar M J., and Young III W. S (1980) Dlfferentiation of delta and mu opiate receptor locahzations by light microscopic autoradiography Proc Natl Acad Sci USA 77, 6239–6243

    Article  CAS  PubMed  Google Scholar 

  30. Herkenham M. and Pert C. B. (1982) Light microscoptc localization of brain opiate receptors: a general autoradiographtc method which preserves tissue quality. J Neurosci 2, 1129–1149.

    CAS  PubMed  Google Scholar 

  31. Chu D. C. M., Albin R. L., Young A. B., and Penney J. B. (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system a quantitative autoradiographic study. Neuroscience 34, 341–357

    Article  CAS  PubMed  Google Scholar 

  32. Herkenham M., Lynn A. B., Johnson M. R., Melvm L. S., de Costa B. R., and Rice K. C. (1991) Characterization and localization of cannabinoid receptors in rat bram: a quantitative in vitro autoradiographic study. J Neurosci 11, 563–583

    CAS  PubMed  Google Scholar 

  33. Jansen E. M., Haycock D. A., Ward S. J., and Seybold V. S. (1992) Distributron of cannabinoid receptors in rat brain determined with ammoalkylindoles. Brain Res. 575, 93–102.

    Article  CAS  PubMed  Google Scholar 

  34. Sim L. J., Xiao R., and Childers S. R. (1996) Identification of opioid receptor-like (ORLl) peptide-stimulated [35S]GTPγS binding in rat brain. NeuroReport 7, 729–733.

    Article  CAS  PubMed  Google Scholar 

  35. Meunier J.-C., Mollereau C., Toll L., Suaudeau C., Moisand C., Alvinerie P., Butour J.-L., Guillemot J.-C., Ferrara P., Monsarrat B., et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377, 532–535.

    Article  CAS  PubMed  Google Scholar 

  36. Reinscheid R. K., Nothacker H.-P., Bourson A., Ardati A., Henningsen R. A., Bunzow J. R., Grandy D. K., Langen H., Monsma F. J., and Civelli O. (1995) Orphanin FQ: a neuropeptide that activates an opiord-like G protein-coupled receptor. Sczence 270, 792–794.

    Article  CAS  Google Scholar 

  37. Sternweis P. C. and Robishaw J. D. (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol Chem 259, 13,806–13,813.

    CAS  PubMed  Google Scholar 

  38. Wieland T. and Jakobs K. H. (1994) Measurement of receptor-stimulated guanosme 5′-0-(γ-thio)triphosphate binding by G-proteins. Methods Enzymol. 237, 3–13.

    Article  CAS  Google Scholar 

  39. Sim L. J., Selley D. E., Dworkin S. I., and Childers S. R. (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 2684–2692.

    CAS  PubMed  Google Scholar 

  40. Sim L. J., Hampson R. E., Deadwyler S. A., and Childers S R. (1996) Effects of chronic treatment with Δ9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 8057–8066.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Sim, L.J., Selley, D.E., Childers, S.R. (1997). Autoradiographic Visualization in Brain of Receptor-G Protein Coupling Using [35S]GTPγS Binding. In: Challiss, R.A.J. (eds) Receptor Signal Transduction Protocols. Methods in Molecular Biology™, vol 83. Humana Press. https://doi.org/10.1385/0-89603-495-X:117

Download citation

  • DOI: https://doi.org/10.1385/0-89603-495-X:117

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-495-2

  • Online ISBN: 978-1-59259-567-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics