Determination of Adenosine Receptor-G Protein Coupling

Significance for Psychiatric and Neurological Disorders
  • Anna Lorenzen
Part of the Neuromethods book series (NM, volume 31)


The purine nucleoside adenosine has been shown to act as a neuromodulator in many areas of the mammalian brain. One of the main actions of adenosine in the central nervous system is the modulation of the release of a variety of neurotransmitters. Adenosine acts as a general depressant in the brain. In contrast, adenosine receptor antagonists show somnolytic and stimulant properties. Although purinergic psychopharmaceuticals are rare, the nonselective adenosine receptor antagonist caffeine may currently be considered the most frequently used nonprescription drug (Fredholm, 1995). Caffeine is of therapeutical benefit in states of migraine headache and headache of nonvascular origin. It is used as an adjuvant in analgesic medications, for the treatment of idiopathic apnea in premature neonates, and for seizure prolongation during courses of electroconvulsive therapy for the treatment of depression (Sawynok, 1995).


Adenylyl Cyclase Adenosine Receptor Adenosine Receptor Antagonist Antagonist Binding Protein Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bourne, H. R. and Stryer, L. (1992) The target sets the tempo. Nature (Lond ) 358, 541–543Google Scholar
  2. Bridges, A. J., Moos, W. H., Szotek, D. L, Trivedi, B. K., Bristol, J. A., Heffner, T. G., Bruns, R. F, and Downs, D A (1987) N6-(2,2-Diethyl)adenosine, a novel adenosine receptor agonist with antipsy-chotic-like activity. J Med.Chem 30, 1709–1711.PubMedGoogle Scholar
  3. Bruns, R. F., Fergus, J H., Badger, E. W., Bristol, J. A., Santay, L A., Hartman, J. D., Hays, S. J, and Huang, C. C (1987) Binding of the Al-selective adenosine antagonist 8-cyclopentyl-l,3-dipropylxanthine to rat brain membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 335, 59–63Google Scholar
  4. Carter, A J., O’Connor, W. T., Carter, M. J., and Ungerstedt, U. (1995) Caffeine enhances acetylcholine release m the hippocampus in vivo by a selective interaction with adenosine Al receptors. J. Pharmacol Exp. Ther 273, 637–642PubMedGoogle Scholar
  5. Cooper, D. M. F., Londos, C, and Rodbell, M. (1980) Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol Pharmacol, 18, 598–601.PubMedGoogle Scholar
  6. Daly, J. W., Butts-Lamb, P., and Padgett, W. (1983) Subclasses of adenosine receptors in the central nervous system-Interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3, 69–80PubMedGoogle Scholar
  7. Dolphin, A. C. and Archer, E. R. (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus Neurosci Lett 43, 49–54PubMedGoogle Scholar
  8. Dragunow, M., Goddard, G. V., and Laverty, R. (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26, 480–487.PubMedGoogle Scholar
  9. Drejer, J., Frandsen, A., Honoré, T., and Schousboe, A. (1987) Adenosine inhibits glutamate stimulated [3H]D-aspartate release from cerebellar granule cells. Neurochem. Int 11, 77–81PubMedGoogle Scholar
  10. Dunwiddie, V and Fredholm, B B (1985) Adenosine modulation of synaptic responses in rat hippocampus: Possible role of inhibition or activation of adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphorylation Res 19, 259–272PubMedGoogle Scholar
  11. Dux, E., Fastboom, J, Ungerstedt, U, Rudolphi, K., and Fredholm, B. B (1990) Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion. Brain Res 516, 248–256.PubMedGoogle Scholar
  12. Ehlert, F. J (1985) The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium Mol. Pharmacol. 28, 410–421.PubMedGoogle Scholar
  13. Fastboom, J. and Fredholm, B. B (1990) Regional differences in the effect of guanine nucleotides on agonist and antagonist binding to adenosine Al-receptors in rat brain, as revealed by autoradiography. Neuroscience 34, 759–769.Google Scholar
  14. Fastboom, J., Pazos, A., Probst, A., and Palacios, J M. (1987) Adenosine A 1 receptors in the human brain: A quantitative autoradiographic study. Neuroscience 22, 827–839Google Scholar
  15. Ferré, S., Snaprud, P, and Fuxe, K (1993) Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. Eur. J Pharmacol (Mol. Pharmacol Section) 244, 311–315.Google Scholar
  16. Ferré, S., von Euler, G, Johansson, B., Fredholm, B., and Fuxe, K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA 88, 7238–7241.PubMedGoogle Scholar
  17. Ferré, S., Fuxe, K., von Euler, G, Johansson, B., and Fredholm, B. B. (1992) Adenosine-dopamme interactions in the brain. Neuroscience 51, 501–512.PubMedGoogle Scholar
  18. Fink, J. S, Weaver, D R., Rivkees, S. A., Peterfreund, S A., Pollack, A. E, Adler, E. M, and Reppert, S. M. (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol. Brain Res. 14, 186–195PubMedGoogle Scholar
  19. Fredholm, B. B (1995) Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 76, 93–101.PubMedGoogle Scholar
  20. Fredholm, B. B. and Lindgren, E. (1987) Effects of N-ethylmaleimide and forskolin on noradrenaline release from rat hippocampal slices Evidence that prejunctional adenosine and α-receptors are linked to N-proteins but not to adenylate cyclase. Acta Physiol. Scand. 130, 95–105.PubMedGoogle Scholar
  21. Fredholm, B B., Lindgren, E, and Lindstrom, K. (1985) Treatment with N-ethylmaleimide selectively reduces adenosine receptor-mediated decreases in cyclic AMP accumulation in rat hippocampal slices. Br J. Pharmacol. 86, 509–513.PubMedGoogle Scholar
  22. Freissmuth, M, Schutz, W., and Linder, M E (1991a) Interactions of the bovine brain A1-adenosine receptor with recombinant G protein α-subunits. Selectivity for rG1α-3 J. Biol. Chem. 266, 17,778–17,783.PubMedGoogle Scholar
  23. Freissmuth, M., Selzer, E., and Schutz, W. (1991b) Interactions of purified bovine bram A1 adenosine receptors with G proteins. Reciprocal modulation of agonist and antagonist binding. Biochem J. 275, 651–656.PubMedGoogle Scholar
  24. Gallo-Rodriguez, C, Ji, X.-D., Melman, N., Siegman, B D, Sanders, L. H, Orlina, J, Fischer, B., Pu, Q., Olah, M. E., van Galen, P. J. M., Stiles, G. L, and Jacobson, K. A. (1994) Structure-activity relationships of N6-benzyladenosrne-5′-uronamides as A3-selective adenosine agonists. J. Med. Chem. 37, 636–646.PubMedGoogle Scholar
  25. Georgiev, V, Johansson, B, and Fredholm, B B (1993) Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res. 612, 271–277PubMedGoogle Scholar
  26. Gierschik, P, Moghtader, R, Straub, C, Dieterich, K., and Jakobs, K. H. (1991) Signal amplification m HL-60 granulocytes. Eur. J. Biochem 197, 725–732.PubMedGoogle Scholar
  27. Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals Annu Rev Biochem 56, 615–649PubMedGoogle Scholar
  28. Goldsmith, P., Rossiter, K., Carter, A., Simonds, W., Unson, C G., Vinitsky, R, and Spiegel, A. M. (1988) Identification of the GTP-binding protein encoded by G13 complementary DNA J Biol Chem. 263, 6476–6479PubMedGoogle Scholar
  29. Goodman, R R, Cooper, M. J., Gavish, M., and Snyder, S H (1982) Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine A1 receptors in brain membranes Mol. Pharmacol 21, 329–335PubMedGoogle Scholar
  30. Hagberg, H, Andersson, P., Lacarewicz, J., Jacobson, I, Butcher, S., and Sandberg, M. (1987) Extracellular adenosme, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia J Neurochem 49, 227–231PubMedGoogle Scholar
  31. Harms, H. H., Warden, G., and Mulder, A H (1979) Effects of adenosine on depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18, 577–580PubMedGoogle Scholar
  32. Haussleithner, V, Freissmuth, M, and Schutz, W (1985) Adenosine-receptor-mediated stimulation of low-Km GTPase in guinea pig cerebral cortex Biochem. J. 232, 501–504Google Scholar
  33. Hawkins, M., Pan, W, Stefanovich, P, and Radulovacki, M. (1988) Desensitation of adenosme A2 receptors in the striatum of the rat following chronic treatment with diazepam. Neuropharmacology 27, 1131–1140.PubMedGoogle Scholar
  34. Heffner, T. G., Wiley, J N, Williams, A E, Bruns, R F., Coughenour, L L, and Downs, D. A. (1987) Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice Psychopharmacology 98, 31–37Google Scholar
  35. Heurteaux, C, Lauritzen, I., Widmann, C. and Lazdunski, M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning Proc Natl. Acad Sci. USA 92, 4666–4670.PubMedGoogle Scholar
  36. Higashijima, T., Ferguson, K. M., Sternweis, P C, Smigel, M. D, and Gilman, A G (1987) Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol Chem 262, 762–766PubMedGoogle Scholar
  37. Hilf, G. and Jakobs, K H (1992) Agonist-independent inhibition of G protein activation by muscarinic acetylcholine receptor antagonists in cardiac membranes Eur J. Pharmacol 225, 245–252.PubMedGoogle Scholar
  38. Hilf, G., Gierschik, P, and Jakobs, K H. (1989) Muscarinic acetylcholine receptor-stimulated binding of guanosine-5′-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur J Biochem 186, 725–731PubMedGoogle Scholar
  39. Hollins, C and Stone, T. W. (1980) Adenosme inhibits γ-amino-butyric acid release from slices of rat cerebral cortex. Br J Pharmacol. 69, 107–112PubMedGoogle Scholar
  40. Jacobson, K. A., Nikodijevic, O., Shi, D, Gallo-Rodriguez, C, Olah, M. E, Stiles, G. L, and Daly, J. W (1993) A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 336, 57–60.PubMedGoogle Scholar
  41. Jarvis, M F and Williams, M. (1989) Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. Eur. J. Pharmacol. 168, 243–246.PubMedGoogle Scholar
  42. Jarvis, M. F., Jackson, R. H., and Williams, M. (1989a) Autoradiographic characterization of the high-affinity adenosine A2 receptors in the rat brain Brain Res 484, 111–118.PubMedGoogle Scholar
  43. Jarvis, M. F., Schulz, R., Hutchison, A J, Do, U. H., Sills, M. A., and Williams, M. (1989b) [3H]CGS 21680, a selective A2 adenosine recep-tor agonist directly labels A2 receptors in rat brain. J. Pharmacol Exp Ther. 251, 888–893PubMedGoogle Scholar
  44. Ji, X.-D, Stiles, G L, and Jacobson, K. A. (1991) [3H]XAC (xanthine amine congener) is a radioligand for A2-adenosine receptors in rabbit striatum. Neurochem. Int. 18, 207–213.PubMedGoogle Scholar
  45. Ji, X.-D., Stiles, G. L., van Galen, P. J M, and Jacobson, K. A. (1992) Characterization of human striatal A2-adenosine receptors using radioligand binding and photoaffinity labeling. J. Recept. Res. 12, 149–169.PubMedGoogle Scholar
  46. Jockers, R., Linder, M E., Hohenegger, M., Nanoff, C, Bertin, B., Strosberg, A. D., Marullo, S., and Freissmuth, M. (1994) Species difference in the G protein selectivity of the human and bovine A1-adenosme receptor J. Biol. Chem. 269, 32,077–32,084PubMedGoogle Scholar
  47. Johansson, B, Parkinson, F E, and Fredholm, B. B. (1992) Effects of mono-and divalent ions on the binding of the adenosine analogue CGS 21680 to adenosine A2 receptors in rat striatum. Biochem. Pharmacol 44, 2365–2370.PubMedGoogle Scholar
  48. Jonzon, B and Fredholm, B B. (1984) Adenosine receptor mediated inhibition of noradrenaline release from slices of the rat hippocampus. Life Sci. 35, 1971–1979.PubMedGoogle Scholar
  49. Kendall, D A and Hill, S J (1988) Adenosine inhibition of histamine-stim-ulated inositol phospholipid hydrolysis in mouse cerebral cortex. J. Neurochem 50, 497–502.PubMedGoogle Scholar
  50. Kent, R S, de Lean, A, and Lefkowitz, R. J. (1980) A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data Mol Pharmacol 17, 14–23.PubMedGoogle Scholar
  51. Klotz, K.-N., Lohse, M. J., Schwabe, U, Cristalli, G., Vittori, S., and Grxfantini, M(1989) 2-Chloro-N6-[3H]cyclopentyladenosine (3H]CCPA)— a high affinity agonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 340, 679–683.Google Scholar
  52. Klotz, K-N, Keil, R., Zimmer, F. J., and Schwabe, U (1990) Guanine nucleotide effects on 8-cyclopentyl-l,3-[3H]dipropylxanthine binding to membrane-bound and solubilized A1 adenosine receptors of rat brain J Neurochem 54, 1988–1994.PubMedGoogle Scholar
  53. Lahti, R. A., Figur, L. M., Piercey, M. F., Ruppel, P. L., and Evans, D. L. (1992) Intrinsic activity determinations at the dopamine D2 guanine nucleotide-bindmg protein-coupled receptor: utilization of receptor state binding affinities Mol Pharmacol 42, 432–438.PubMedGoogle Scholar
  54. Laugwitz, K-L., Spicher, K., Schultz, G, and Offermanns, S. (1994) Identification of receptor-activated G proteins: Selective lmmunoprecipitation of photolabeled G protein α subunits Methods Enzymol 237, 283–294.PubMedGoogle Scholar
  55. Lohse, M. J., Lenschow, V., and Schwabe, U (1984) Two affinity states of R1 adenosine receptors in brain membranes. Mol Pharmacol 26, 1–9.PubMedGoogle Scholar
  56. Lohse, M J., Klotz, K.-N., Jakobs, K. H, and Schwabe, U. (1985) Barbiturates are selective antagonists at A1 adenosine receptors J Neurochem. 45, 1761–1770.PubMedGoogle Scholar
  57. Lohse, M. J, Klotz, K-N., Lindenborn-Fotmos, J, Reddington, M., Schwabe, U., and Olsson, R. A. (1987a) 8-Cyclopentyl-l,3-dipropylxanthine (DPCPX)—a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol 336, 204–210Google Scholar
  58. Lohse, M. J., Brenner, A S, and Jackisch, R. (1987b) Pentobarbital antagonizes the A1 receptor-mediated inhibition of hippocampal neurotransmitter release. J Neurochem. 49, 189–194.PubMedGoogle Scholar
  59. Lohse, M. J, Boser, S., Klotz, K.-N., and Schwabe, U (1987c) Affinities of barbiturates for the GABA-receptor complex and A1 adenosine receptors, a possible explanation of their excitatory effects. Naunyn-Schmiedeberg’s Arch Pharmacol 336, 211–217.Google Scholar
  60. Lorenzen, A., Fuss, M, Vogt., H, and Schwabe, U. (1993) Measurement of guanine nucleotide binding protein activation by A1 adenosine receptor agonists in bovine brain membranes, stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding Mol Pharmacol. 44, 115–123PubMedGoogle Scholar
  61. Luthin, D. R., Olsson, R A, Thompson, R D., Sawmiller, D R, and Linden, J. (1995a) Characterization of two affinity states of adenosine A2a receptors with a new radioligand, 2-[2-(4-amino-3-[125I]iodophenyl)-ethylamino]adenosine. Mol. Pharmacol. 47, 307–313PubMedGoogle Scholar
  62. Luthin, D R, Lee, K. S, Okonkwo, D., Zhang, P J, and Linden, J (1995b) Photoaffinity labeling with 2-[2-(4-azido-3-[I-125]iodophenyl)ethylamino]adenosine of A2a adenosine receptors in rat brain. J. Neurochem. 65, 2072–2079PubMedGoogle Scholar
  63. Marala, R B. and Mustafa, S J. (1993) Direct evidence for the coupling of A2-adenosine receptor to stimulatory guanine nucleotide-binding-protein in bovme brain striatum. J. Pharmacol Exp Ther. 266, 294–300PubMedGoogle Scholar
  64. Marangos, P. J, Weiss, S R. B, Montgomery P., Patel, J, Narang, P. K., Cappabianca, A. M., and Post, R M. (1985) Chronic carbamazepine treatment increases brain adenosine receptors Epilepsia 26, 493–498.PubMedGoogle Scholar
  65. Marangos, P. J., Montgomery, P., Weiss, S. R. B., Patel, J., and Post, R M. (1987) Persistent upregulation of brain adenosine receptors in response to chronic carbamazepine treatment. Clin Neurophartnacol. 10, 443–448Google Scholar
  66. Martin, R L., Lloyd, H. G. E, and Cowan, A. I (1994) The early events of oxygen and glucose deprivation, setting the scene for neuronal death? Trends Neurosci 17, 251–257.PubMedGoogle Scholar
  67. Michaelis, M. L., Michaelis, E. K., and Myers, S. L. (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci 24, 2083–2092PubMedGoogle Scholar
  68. Morgan, P. F and Stone, T. W. (1986) Inhibition by benzodiazepines and beta-carbolines of brief (5 seconds) synaptosomal accumulation of [3H]-adenosine. Biochem. Pharmacol. 35, 1760–1762.PubMedGoogle Scholar
  69. Munshi, R. and Linden, J. (1989) Co-purification of A1 adenosine receptors and guanine nucleotide-binding proteins from bovine brain. J. Biol. Chem 264, 14,853–14,589.PubMedGoogle Scholar
  70. Munshi, R, Pang, I.-H., Sternweis, P., and Linden, J. (1991) Aj Adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins G11 G12, and G0. J. Biol Chem. 266, 22,285–22,289PubMedGoogle Scholar
  71. Nakahata, N., Abe, M. T, Matsuoka, I., Ono, T., and Nakanishi, H. (1991) Adenosine inhibits histamine-induced phosphoinositide hydrolysis mediated via pertussis toxin-sensitive G protein in human astrocytoma cells. J. Neurochem. 57, 963–969PubMedGoogle Scholar
  72. Nonaka, H, Mori, A., Ichimura, M., Shmdou, T., Yanagawa, K., Shimada, J, and Kase, H (1994) Binding of [3H]KF17387S, a selective adenosine A2 receptor antagonist, to rat brain membranes. Mol. Pharmacol 46, 817–822.PubMedGoogle Scholar
  73. Offermanns, S., Schultz, G., and Rosenthal, W. (1991) Identification of receptor-activated G proteins with photoreactive GTP analog, [α-32P]GTP azidoanihde. Methods Enzymol. 195, 286–301.PubMedGoogle Scholar
  74. Olah, M E., Gallo-Rodriguez, C, Jacobson, K A., and Stiles, G. L (1994) 125I-4-Ammobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45, 978–982.PubMedGoogle Scholar
  75. O’Regan, M. H and Phillis, J W. (1988) Potentiation of adenosine-evoked depression of rat cerebral cortical neurons by triazolam. Brain Res 445, 376–379.PubMedGoogle Scholar
  76. Palmer, T M., Gettys, T W., and Stiles, G. L. (1995) Differential interaction with and regulation of multiple G proteins by the rat A3 adenosine receptor. J. Biol Chem. 270, 16,895–16,902.PubMedGoogle Scholar
  77. Parkinson, F. E. and Fredholm, B. B. (1990) Autoradiographic evidence for G protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn-Schmiedeberg’s Arch Pharmacol 342, 85–89.Google Scholar
  78. Pedata, F., Antonelli, T., Lambertini, L., Beam, L., and Pepeu, G. (1983) Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole, and aminophylline on acetylcholine release from electrically-stimulated brain slices Neuropharmacology 22, 609–614.PubMedGoogle Scholar
  79. Phillis, J. W. and Stair, R. E. (1987) Ro 15-1788 both antagonizes and potentiates adenosine-evoked depression of cerebral cortical neurons Eur J. Pharmacol 136, 151–156PubMedGoogle Scholar
  80. Phillis, J. W., Wu, P. H, and Bender, A. S. (1981) Inhibition of adenosine uptake into rat brain synaptosomes by the benzodiazepines. Gen. Pharmacol 12, 67–70.PubMedGoogle Scholar
  81. Prater, M. R., Taylor, H., Munshi, R., and Linden, J (1992) Indirect effect of guanine nucleotides on antagonist bindmg to A1 adenosine receptors: occupation of cryptic binding sites by endogenous vesicular adenosine. Mol. Pharmacol. 42, 765–772.PubMedGoogle Scholar
  82. Prémont, J., Perez, M., Tassin, J-P., Thierry, A-M., Hervé, D., and Bockaert, J. (1979) Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution Mol. Pharmacol. 16, 790–804.PubMedGoogle Scholar
  83. Proctor, W. R and Dunwiddie, T. V. (1987) Pre-and postsynaptic actions of adenosine in the in vitro rat hippocampus Brain Res. 426, 187–190PubMedGoogle Scholar
  84. Ramkumar, V, Bumgarner, J. R., Jacobson, K A, and Stiles, G L. (1988) Multiple components of the A1 adenosine receptor-adenylate cyclase system are regulated m rat cerebral cortex by chronic caffeine ingestion. J. Clin. Invest. 82, 242–247PubMedGoogle Scholar
  85. Ramkumar, V., Stiles, G. L., Beaven, M. A., and Ali, H. (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells J. Biol Chem 268, 16,887–16,890.PubMedGoogle Scholar
  86. Rudolphi, K. A., Keil, M, Fastboom, J, and Fredholm, B. B. (1989) Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment Neurosa Lett. 103, 275–280.Google Scholar
  87. Rudolphi, K. A., Schubert, P., Parkinson, F. A, and Fredholm, B. B. (1992) Neuroprotective role of adenosine m cerebral ischemia Trends Pharmacol Sci 13, 439–445PubMedGoogle Scholar
  88. Salvatore, C A, Jacobson, M. A., Taylor, H. E, Linden, J, and Johnson, R G. (1993) Molecular cloning and characterization of the human A3 adenosme receptor. Proc Natl Acad. Sci. USA 90, 10,365–10,369.PubMedGoogle Scholar
  89. Sawynok, J (1995) Pharmacological rationale for the clinical use of caffeine Drugs 49, 37–50PubMedGoogle Scholar
  90. Schiffmann, S. N, Jacobs, O, and Vanderhaeghen, J-J (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons an in situ hybridization study. J Neurochem 57, 1062–1067.PubMedGoogle Scholar
  91. Schingnitz, G, Küfner-Muhl, U, Ensinger, H, Lehr, E, and Kuhn, F J. (1991) Selective Aj-antagomsts for treatment of cognitive deficits. Nucleosides Nucleotides 10, 1067–1076.Google Scholar
  92. Schnecko, A., Witte, K., Bohl, J., Ohm, T., and Lemmer, B. (1994) Adenylyl cyclase activity in Alzheimer’s disease brain: stimulatory and inhibitory and signal transduction pathways are differentially affected Brain Res. 644, 291–296.PubMedGoogle Scholar
  93. Scholz, K. P and Miller, R J (1991) Analysis of adenosine actions on Ca2+ currents and synaptic transmission in cultured rat hippocampal pyramidal neurones. J. Physiol. (Lond.) 435, 373–393Google Scholar
  94. Scholz, K. P. and Miller, R. J. (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at rat hippocampal synapses. Neuron 8, 1139–1150.PubMedGoogle Scholar
  95. Scott, R. H. and Dolphin, A. C. (1987) Inhibition of calcium currents by an adenosine analogue 2-chloroadenosine, in Topics and Perspectives in Adenosine Research (Gerlach, E., and Becker, B. E, eds.), Springer-Verlag, Berlin, pp 549–558Google Scholar
  96. Skolnick, P., Paul, S. M, and Marangos, P. J. (1980) Purines as endogenous ligands of the benzodiazepine receptor. Fed. Proc. 39, 3050–3055.PubMedGoogle Scholar
  97. Stehle, J H., Rivkees, S A., Lee, J. J., Weaver, D. R., Deeds, J. D., and Reppert, S. M. (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosme receptor subtype Mol Endocrinol. 6, 384–393PubMedGoogle Scholar
  98. Stiles, G L. (1988) A1 Adenosine receptor-G protein coupling in bovine brain membranes-effects of guanine nucleotides, salt, and solubilization. J. Neumchem 51, 1592–1598.Google Scholar
  99. Sweeney, M. I. and Dolphin, A C. (1995) Adenosine A1 agonists and the Ca2+ channel agonist Bay K 8644 produce a synergistic stimulation of the GTPase activity of G0 in rat frontal cortical membranes. J Neumchem. 64, 2034–2042.Google Scholar
  100. Tian, W.-T, Duzic, E, Lanier, S. M, and Deth, R C. (1994) Determinants of α2 adrenergic receptor activation of G proteins: evidence for a precoupled receptor/G protein state. Mol Pharmacol. 45, 524–531.PubMedGoogle Scholar
  101. Traynor, J. R and Nahorski, S. R (1995) Modulation by μ-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells Mol. Pharmacol. 47, 848–854PubMedGoogle Scholar
  102. Trussell, L O and Jackson, M B. (1985) Adenosme-activated potassium conductance in cultured striatal neurons. Proc. Natl. Acad Sci USA 82, 4857–4861.PubMedGoogle Scholar
  103. Trussell, J. O. and Jackson, M. B. (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J Neurosci. 7, 3306–3316PubMedGoogle Scholar
  104. Van Calker, D., Muller, M, and Hamprecht, B. (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells Nature (Lond.) 276, 839–841Google Scholar
  105. Van Calker,, Muller, M, and Hamprecht, B. (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured bram cells. J Neurochem. 33, 999–1005.PubMedGoogle Scholar
  106. Van Calker, D, Steber, R, Klotz, K-N., and Greil, W. (1991) Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur. J Pharmacol. (Mol. Pharm Section) 206, 285–290.Google Scholar
  107. Van der Wenden, E. M, Hartog-Witte, H. R., Roelen, H. C. P. F., von Frijtag Drabbe Kunzel, J K., Pirovano, I M., Mathôt, R A A., Danhof, M, van Aerschot, A, Lidaks, M. J, Ijzerman, A P, and Soudijn, W (1995a) 8-Substituted adenosine and theophylline 7-riboside analogues as potential partial agonists for the adenosine A1 receptor. Eur. J. Pharmacol (Mol Pharm Section) 290, 189–199Google Scholar
  108. Van der Wenden, E. M, von Frijtag, Drabbe Kunzel, J K., Mathôt, R A A., Danhof, M., Ijzerman, A. P, Soudijn, W (1995b) Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. J. Med. Chem 38, 4000–4006PubMedGoogle Scholar
  109. Van der Ploeg, I, Parkinson, F E., and Fredholm, B B (1992) Effect of pertussis toxin on radioligand binding to rat brain adenosine A1 receptors. J Neurochem. 58, 1221–1229PubMedGoogle Scholar
  110. Von Lubitz, D K., Lin, R. C, Popik, P., Carter, M F., and Jacobson, K A. (ai]1994) Adenosine A3 receptor and cerebral ischemia Eur J. Pharmacol. 263, 59–67Google Scholar
  111. Von Lubitz, D K., Carter, M F., Deutsch, S. I., Lin, R. C, Mastropaolo, J, Meshulam, Y., and Jacobson, K A. (1995) The effects of adenosine A3 receptor stimulation on seizures in mice. Eur. J Pharmacol 275, 23–29Google Scholar
  112. Waelbroeck, M., Robberecht, P, Chatelain, P, and Christophe, J. (1982) Rat cardiac muscarinic receptors I Effects of guanine nucleotides on high-and low-affinity binding sites Mol. Pharmacol. 21, 581–588.PubMedGoogle Scholar
  113. Weir, R. L., Anderson, S. M, and Daly, J W (1990) Inhibition of N6-[3H]cyclohexyladenosine binding by carbamazepine. Epilepsia 31, 503–512PubMedGoogle Scholar
  114. Wieland, T., Kreiss, J., Gierschik, P., and Jakobs, K H. (1992) Role of GDP in formyl-peptide-receptor-induced activation of guanine-nucleotide-binding proteins in membranes of HL 60 cells. Eur. J Biochem 205, 1201–1206PubMedGoogle Scholar
  115. Yeung, S-M H. and Green, R D (1983) Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidodiphosphate or N-ethylmaleimide. J Biol Chem 258, 2334–2339PubMedGoogle Scholar
  116. Zhou, Q.-Y., Li, C, Olah, M. E., Johnson, R. A., Stiles, G. L., and Civelli, O (1992) Molecular cloning and characterization of an adenosine receptor-the A3 adenosine receptor Proc Natl. Acad Sci. USA 89, 7432–7436PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Anna Lorenzen
    • 1
  1. 1.Pharmaku Eugisches lnstitutUniversität HeidelbergGermany

Personalised recommendations