Protein Kinase C as a Modulator of 5- HT1A and Dopamine- D2 Receptor Signaling

  • Paul R. Albertau
  • Paola M. C. Lembo
  • Stephen J. Morris
Part of the Neuromethods book series (NM, volume 31)


Since its identification as a family of protein kinases that is activated in the presence of calcium, phosphatidyl serine, and diacylglycerol (DAG), protein kinase C (PKC) has been regarded as one of the early steps in receptor signaling (Nishizuka, 1988, Nishizuka, 1995; Berridge, 1993; Rasmussen et al., 1995). The generation of the second messengers DAG and calcium by receptor-mediated phospholipase C (PLC) activation leads to rapid activation of several isoforms of PKC (Newton, 1995), its translocation to the membrane (Kiley et al., 1995), and the phosphorylation of numerous proteins. With the finding by Castagna et al. (1982) that phorbol esters (e.g., 12-O-tetrade-canoyl 4β-phorbol 13-acetate [TPA]) are potent and selective activators of multiple PKC isoforms, this pharmacological tool was used extensively to document the importance of PKC in a variety of stimulatory events: lymphocyte activation, contractile and secretory responses, gene transcription, and cell proliferation (Nishizuka, 1988,Nishizuka, 1995; Berridge, 1993; Rasmussen et al., 1995). In addition to these stimulatory actions, PKC activation was also found to have a negative feedback action to inhibit the activity of receptors that coupled to PLC to augment DAG and calcium levels.


Adenylyl Cyclase Calcium Mobilization Receptor Phosphorylation Heterologous Desensitization Homologous Desensitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Baset, H., Bozovic, V, Szyf, M, and Albert, P. R. (1992) Conditional transformation mediated via a pertussis toxin-sensitive receptor signalling pathway. Mol. Endocrtnol. 6, 730–740.CrossRefGoogle Scholar
  2. Albert, P R (1994) Heterologous expression of G protein-linked receptors in pituitary and fibroblast cell lines. Vitam Horm. 48, 59–109PubMedCrossRefGoogle Scholar
  3. Albert, P. R. (1995) Dopamine-D2 receptors mediate inhibition of DNA synthesis in GH pituitary cells via G 1/G0 proteins Endocrine Soc Mtg, Washington, DC, #P3-93Google Scholar
  4. Albert, P. R and Morris, S J (1994) Antisense knockouts, molecular scalpels for the dissection of signal transduction. Trends Pharmacol Sci 15, 250–254.PubMedCrossRefGoogle Scholar
  5. Albert, P. R. and Raquidan, D. (1995) Dopamine-D2 receptor routing through multiple G proteins for inhibition of TRH-stimulated prolactin secretion Endocrine Society Mtg., Washington, DC, #Pl-3Google Scholar
  6. Albert, P. R., Neve, K., Bunzow, J., and Civelli, O. (1990a) Coupling of a rat dopamine D2 receptor to inhibition of adenylyl cyclase and prolactin secretion. J Biol. Chem. 265, 2098–2104.PubMedGoogle Scholar
  7. Albert, P. R, Zhou, Q. Y., VanTol, H H. M., Bunzow, J., and Civelli, O (1990b) Cloning, functional expression and mRNA tissue distribution of the rat 5-HT1A receptor gene. J. Biol. Chem. 265, 5825–5832PubMedGoogle Scholar
  8. Albert, P. R., Lembo, P., Storring, J. M., Charest, A., and Saucier, C. (1996) The 5-HT1A receptor-signalling, desensitization, and gene regulation. Neuropsychopharmacology 14, 19–25.PubMedCrossRefGoogle Scholar
  9. Alblas, J, van Etten, I., Khanum, A., and Moolenaar, W. H. (1995) C-terminal truncation of the neurokinin-2 receptor causes enhanced and sustained agonist-induced signaling. Role of receptor phosphorylation in signal attenuation. J Biol. Chem. 270, 8944–8951.PubMedCrossRefGoogle Scholar
  10. Andrade, R. and Nicoll, R. A. (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro.J. Physiol. (Lond.) 394, 99–124Google Scholar
  11. Baertschi, A. J, Audigier, Y., Lledo, P.-M, Israel, J.-M., Bockaert, J., and Vincent, J.-D. (1992) Dialysis of lactotropes with antisense oligonucleotides assigns guanine nucleotide binding protein subtypes to their channel effectors. Mol. Endocnnol. 6, 2257–2265CrossRefGoogle Scholar
  12. Barr, A. J. and Watson, S. P. (1994) Protein kmase C mediates delayed inhibitory feedback regulation of human neurokinm type 1 receptor activation of phosphohpase C in UC11 astrocytoma cells Mol. Pharmacol. 46, 266–273PubMedGoogle Scholar
  13. Bates, M. D, Senogles, S. E., Bunzow, J R., Liggett, S B, Civelli, O., and Caron, M. G. (1990) Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. Mol. Pharmacol. 39, 55–63.Google Scholar
  14. Benya, R V., Kusui, T., Battey, J. R, and Jensen, RT (1995) Chronic desensitization and down-regulation of the gastrin-releasing peptide receptor are mediated by a protein kinase C-dependent mechanism J. Biol. Chem. 270, 3346–3352PubMedCrossRefGoogle Scholar
  15. Berndge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature (Lond.) 361, 315–325.CrossRefGoogle Scholar
  16. Birnbaumer, L. (1992) Receptor-to-effector signaling through G proteins, roles for βγ dimers as well as a-subumts. Cell 71, 1069–1072PubMedCrossRefGoogle Scholar
  17. Blin, N., Yun, J., and Wess, J. (1995) Mapping of single amino acid residues required for selective activation of Gq/ll by the m3 muscannic acetylcholine receptor J Biol Chem. 270, 17, 741–17,748.Google Scholar
  18. Bouvier, M, Guibault, N., and Bonin, H. (1991) Phorbol-ester induced phosphorylation of the β2-adrenergic receptor decreases its coupling to Gs. FEBS Lett. 279, 243–248.PubMedCrossRefGoogle Scholar
  19. Bushfield, M., Murphy, G. J., Lavan, B. E., Parker, P. J., Hruby, V. J., Milligan, G., and Houslay, M. D. (1990) Hormonal regulation of G12 α-subunit phosphorylation in intact hepatocytes. Biochem.J. 268, 449–457.PubMedGoogle Scholar
  20. Butkerait, P., Aheng, Y, Hallak, H., Graham, T. E, Miller, H. A., Burns, K. D., Molinoff, P. B., and Manning, D. R. (1995) Expression of the human 5-hydroxytryptamine-l A receptor in Sf9 cells. Reconstitution of a coupled phenotype by co-expression of mammalian G protein subunits. J. Biol. Chem. 270, 18,691–18,699.PubMedCrossRefGoogle Scholar
  21. Castagna, M., Takai, Y, Kaibuchi, K., Sano, K., Kikkawa, U, and Nishizuka, Y. (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257, 7847–7851.PubMedGoogle Scholar
  22. Chen, Y and Penington, N J (1996) Differential effects of PKC activation on 5-HT1A receptor coupling to calcium and potassium currents in serotonergic neurons. J. Physiol. 496.1, 129–137Google Scholar
  23. Chio, C. L., Drong, R. R, Riley, D. T., Gill, G S., Slightom, J L, and Huff, RM (1994) D4 dopamine receptor-mediated signaling events determined in transfected Chinese hamster ovary cells. J Biol Chem. 269, 11,813–11,819.PubMedGoogle Scholar
  24. Civelli, O., Bunzow, J. R., and Grandy, D. K. (1993) Molecular diversity of the dopamine receptors. Ann. Rev. Pharmacol. Toxicol. 32, 281–307.CrossRefGoogle Scholar
  25. Clapham, D. E. and Neer, EJ (1993) New roles for G protein βγ-dimers in transmembrane signalling. Nature (Lond.) 365, 403–406.CrossRefGoogle Scholar
  26. Dhanasekaran, N., Heasley, L. E, and Johnson, G. L (1995) G proteincoupled receptor systems involved in cell growth and oncogenesis. Endocrin. Rev. 16, 259–270Google Scholar
  27. Eason, M. G., Kurose, H., Holt, B. D., Raymond, J. R., and Liggett, S. B. (1992) Simultaneous coupling of alpha 2-adrenergic receptors to two G proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to G1 and Gs. J Biol. Chem 267, 15,795–15,801.PubMedGoogle Scholar
  28. Elsholtz, H. P., Lew, A. M., Albert, P. R., and Sundmark, V. C. (1991) Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. Dual signaling pathways required for D2 receptor-regulated expression of the prolactin gene. J. Biol Chem. 266, 22,919–22,925PubMedGoogle Scholar
  29. Exton, J. H. (1994) Phosphoinositide phospholipases and G proteins in hormone action Annual Rev. Physiol. 56, 349–369.PubMedCrossRefGoogle Scholar
  30. Fargin, A, Raymond, J R., Regan, J. W., Cotecchia, S., Lefkowitz, R J, and Caron, M. G (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J. Biol. Chem. 264, 14,848–14,852.PubMedGoogle Scholar
  31. Fields, T. A. and Casey, P. J. (1995) Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. J. Biol. Chem. 270, 23,119–23,125.PubMedCrossRefGoogle Scholar
  32. Florio, T., Pan, M, Newman, B., Hershberger, R. E., Civelh, O., and Stork, P. J. S. (1992) Dopaminergic inhibition of DNA synthesis in pituitary rumor cells is associated with phosphotyrosine phosphatase activity. J. Biol. Chem 267, 24,169–24,172.PubMedGoogle Scholar
  33. Gandino, L, Longati, P, Medico, E, Prat, M., and Comoglio, P. M. (1994) Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J. Biol. Chem. 269, 1815–1820.PubMedGoogle Scholar
  34. Harrington, M.A., Shaw, K., Zhong, P., and Ciaranello, R. D. (1994) Agonist-induced desensitization and loss of high-affinity binding sites of stably expressed human 5-HT1A receptors. J. Pharmacol Exp. Ther. 268, 1098–1106.PubMedGoogle Scholar
  35. Hille, B. (1994) Modulation of ion-channel function by G protein-coupled receptors. Trends Neurosci 17, 531–536.PubMedCrossRefGoogle Scholar
  36. Hunt, T. W., Carroll, R.C, and Peralta, E G. (1994) Heterotrimenc G proteins containing G alpha i3 regulate multiple effector enzymes in the same cell. Activation of phospholipases C and A2 and inhibition of adenylyl cyclase. J. Biol Chem. 269, 29,565–29,570PubMedGoogle Scholar
  37. Innis, R. B. and Aghajanian, G. H. (1987) Pertussis-toxm blocks 5-HT1A receptor and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143, 195–204.PubMedCrossRefGoogle Scholar
  38. Kemp, B. E. and Pearson, R. B. (1990) Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346.PubMedCrossRefGoogle Scholar
  39. Kennelly, P J. and Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol. Chem 266, 15, 555–15,558.Google Scholar
  40. Kiley, S C, Jaken, S., Whelan, R., and Parker, P. J. (1995) Intracellular targeting of protein kinase C isoenzymes functional implications. Biochem. Soc. Transact. 23, 601–605Google Scholar
  41. Kleuss, C, Hescheler, J., Ewel, C, Rosenthal, W., Schultz, G., and Wittig, B (1991) Assignment of G protein subtypes to specific receptors inducing inhibition of calcium currents. Nature (Lond.) 353, 43–48CrossRefGoogle Scholar
  42. Kleuss, C, Scherubl, H, Hescheler, J, Schultz, G, and Wittig, B. (1992) Different β-subunits determine G protem interaction with transmembrane receptors. Nature (Lond.) 358, 424–426.CrossRefGoogle Scholar
  43. Kleuss, C, Scherubl, H, Hescheler, J., Schultz, G, and Wittig, B (1993) Selectivity in signal transduction determined by y subunits of heterotrimeric G proteins. Science 259, 832–834Google Scholar
  44. Kobilka, B. (1992) Adrenergic receptors as models for G protem-coupled receptors. Annu. Rev. Neurosci. 15, 87–114.PubMedCrossRefGoogle Scholar
  45. Krishek, B. J., Xie, X., Blackstone, C, Huganir, R L., Moss, S J., and Smart, T. G. (1994) Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 12, 1081–1095.PubMedCrossRefGoogle Scholar
  46. Lajiness, M. E., Chio, C. L., and Huff, R. M. (1993) D2 dopamine receptor stimulation of mitogenesis in transfected Chinese hamster ovary cells, relationship to dopamine stimulation of tyrosine phosphorylations. J. Pharm Exp Ther. 267, 1573–1581Google Scholar
  47. Laugwitz, K. L., Allgeier, A., Offermanns, S., Spicher, K., Van Sande, J, Dumont, J E., and Schultz, G. (1996) The human thyrotropin receptor a heptahelical receptor capable of stimulating members of all four G protem families. Proc Natl. Acad Sci USA 93, 116–120PubMedCrossRefGoogle Scholar
  48. Lefkowitz, R. J., Hausdorff, W. P., and Caron, M. G. (1990) Role of phosphorylation in desensitization of the β-adrenoceptor. Trends Pharmacol. Sci. 11, 190–194.PubMedCrossRefGoogle Scholar
  49. Lembo, P. and Albert, P. R. (1994) 5-HT1B receptors mediate a stimulatory calcium signaling opossum kidney (OK) cells negative regulation by protein kinase C. Can J Physiol. Pharmacol 72(Suppl. 1) 536.Google Scholar
  50. Lembo, P. M. C and Albert, PR. (1995) Multiple phosphorylation sites are required for pathway-selective uncoupling of the 5-hydroxytryptamine 1A receptor by protem kinase C Mol. Pharmacol. 48, 1024–1029PubMedGoogle Scholar
  51. Lembo, P. M. C, Ghahremani, M. H., Morris, S. J., and Albert, PR (1997) A conserved threonme residue m the second cytoplasmic loop of the 5-HT1A receptor directs pathway selective signaling. Mol. Pharmacol., in pressGoogle Scholar
  52. Lew, A M. and Elsholtz, H. P (1995) A dopamine-responsive domain in the N-terminal sequence of Pit-1 Transcriptional inhibition in endocrine cell types J Biol. Chem. 270, 7156–7160.PubMedCrossRefGoogle Scholar
  53. Lew, A. M, Yao, H., and Elsholtz, H P. (1994) G(i) alpha 2-and G(o) alpha-mediated signaling in the Pit-1-dependent inhibition of the prolactin gene promoter. Control of transcription by dopamine D2 receptors. J Biol. Chem. 269, 12,007–12,013.PubMedGoogle Scholar
  54. Liu, J, Conklin, B R., Bhn, N, Yun, J., and Wess, J. (1995) Identification of a receptor/G protein contact site critical for signaling specificity and G protein activation. Proc. Natl Acad. Sci. USA 92, 11,642–11,646.PubMedCrossRefGoogle Scholar
  55. Liu, Y. F. and Albert, P. R. (1991) Cell-specific signalling of the 5-HT1A receptor. Modulation by PKC and PKA. J. Biol. Chem. 266, 23,689–23,697.PubMedGoogle Scholar
  56. Liu, Y. E, Civelh, O., Zhou, Q. Y., and Albert, P. R (1992) Differential sensitivity of the short and long human dopamine-D2 receptor subtypes to protein kinase C. J Neurochem 59, 2311–2317.PubMedCrossRefGoogle Scholar
  57. Liu, Y E, Jakobs, K H, Rasemck, M M., and Albert, P R (1994) G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J. Biol. Chem. 269, 13,880–13,886.PubMedGoogle Scholar
  58. Lledo, P.-M., Legendre, P., Israel, J-M., and Vincent, J.-D. Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 127, 990–1001.Google Scholar
  59. Lledo, P-M, Homburger, V., Bockeart, J., and Vincent, J.-D. (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8, 455–463.PubMedCrossRefGoogle Scholar
  60. Mestek, A., Hurley, J. H., Bye, L. S., Campbell, A. D., Chen, Y, Tian, M., Liu, J, Schulman, H, and Yu, L. (1995) The human mu opioid receptor, modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C J. Neurosci. 15, 2396–2406PubMedGoogle Scholar
  61. Nebigil, C. G, Gamovskaya, M. N., Casanas, S J., Mulheron, J G., Parker, E. M., Gettys, T W., and Raymond, J. R. (1995) Agonist-induced desensitization and phosphorylation of human 5-HT1A receptor expressed in Sf9 insect cells. Biochemistry 34, 11,954–11,962.PubMedCrossRefGoogle Scholar
  62. Neer, E. J. (1995) Heterotnmeric G proteins: organizers of transmembrane signals Cell 80, 249–257PubMedCrossRefGoogle Scholar
  63. Newton, A. C. (1995) Protein kinase C: structure, function, and regulation. J Biol. Chem. 270, 28,495–28,498.PubMedCrossRefGoogle Scholar
  64. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation Nature (Lond.) 334, 661–665.CrossRefGoogle Scholar
  65. Nishizuka, Y (1995) Protein kinase C and lipid signaling for sustained cellular responses FASEB J. 9, 484–496PubMedGoogle Scholar
  66. Ostrowski. J., Kjelsberg M A., Caron, M. G, and Lefkowitz, R. J. (1992) Mutagenesis of the β2-adrenergic receptor. How structure elucidates function Annu Rev Pharmacol. Toxicol 32, 167–183PubMedCrossRefGoogle Scholar
  67. Penington, N. J and Kelly, J. S. (1990) Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 4, 751–758.PubMedCrossRefGoogle Scholar
  68. Penington N. J., Kelly, J. S., and Fox, AP. (1993a) Whole-cell recordings of inwardly rectifying K+ currents activated by5-HTlA receptors on dorsal raphe neurones of the adult rat. J. Physiol (Lond) 469, 387–405Google Scholar
  69. Penington, N. J., Kelly, J S., and Fox, AP (1993b) Unitary properties of potassium channels activated by 5-HT in acutely isolated rat dorsal raphe neurones J Physiol. (Lond.) 469, 407–426.Google Scholar
  70. Rasmussen H., Isales C M, Calle R., Throckmorton D, and Anderson M, Gasalla-Herraiz J., McCarthy R (1995) Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocr Rev. 16, 649–681PubMedGoogle Scholar
  71. Raymond, J. R. (1991) Protein kinase C induces phosphorylation and desensitization of the human 5-HT1A receptor. J. Biol. Chem. 266, 14,747–14,753PubMedGoogle Scholar
  72. Raymond, J. R. (1995) Multiple mechanisms of receptor-G protein signaling specificity. Am J Physiol. 269, F141–F158PubMedGoogle Scholar
  73. Ryu, S. H., Kim, U., Wahl, M. I., Brown, A. B., Carpenter, G., Huang, K., and Rhee, S. G. (1990) Feedback regulation of PLC-β by protein kinase C. J. Biol. Chem. 265, 17,941–17,945.PubMedGoogle Scholar
  74. Seabrook, G. R., Knowles, M, Brown, N., Myers, J., Sinclair, H., Patel, S., Freedman, S. B., and McAllister (1994) Pharmacology of high-threshold calcium currents m GH4C1 pituitary cells and their regulation by activation of human D2 and D4 receptors. Br. J. Pharmacol. 112, 728–734.PubMedGoogle Scholar
  75. Senogles, S. E. (1994) The D2 dopamine receptor mediates inhibition of growth in GH4ZR7 cells: involvement of protein kinase-Ce. Endocrinology 134, 783–789.PubMedCrossRefGoogle Scholar
  76. Shih, M and Malbon, C C. (1994) Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and beta-adren-ergic receptor kinase reveal distmctive cell-type-specific roles in agonist-induced desensitization Proc Natl Acad. Set USA 91, 12,193–12,197.CrossRefGoogle Scholar
  77. Stea, A., Soong, T. W., and Snutch, T. P. (1995) Determmants of PKC-dependent modulation of a family of neuronal calcium channels Neuron 15, 929–940PubMedCrossRefGoogle Scholar
  78. Sterne-Marr, R. and Benovic, J. L (1995) Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam Horm 51, 193–234PubMedCrossRefGoogle Scholar
  79. Strader, C. D., Fong, T. M., Tota, M R., Underwood, D., and Dixon, R A (1994) Structure and function of G protein-coupled receptors Ann. Rev. Bwchem 63, 101–132.CrossRefGoogle Scholar
  80. Strassheim, D. and Malbon, C. C. (1994) Phosphorylation of G12 attenuates inhibitory adenylyl cyclase in neuroblastoma/glioma (NG 108-15) cells J Biol. Chem. 269, 14,307–14,313PubMedGoogle Scholar
  81. Tang, W.-J. and Gilman, A. G (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254, 1500–1503PubMedCrossRefGoogle Scholar
  82. Vallar, L., Claudia, M., Magni, M., Albert, P., Bunzow, J., Meldolesi, J, and Civelli, O. (1990) Differential coupling of dopaminergic D2 receptor expressed in different cell types J Biol Chem. 265, 10,320–10,326PubMedGoogle Scholar
  83. van Huizen, R, Bansse, M., and Stam, N. J. (1993) Agonist-induced down-regulation of human 5-HT1A and 5-HT2 receptors in Swiss 3T3 cells Neuroreport 4, 1327–1330.PubMedCrossRefGoogle Scholar
  84. Varrault A., Bockaert J, and Waeber C. (1992) Activation of 5-HT1A receptors expressed in NIH-3T3 cells induces focus formation and potentiates EGF effect on DNA synthesis Mol. Bwl. Cell 3, 961–969Google Scholar
  85. Varrault, A, Nguyen, D. L, McClue, S., Harris, B., Joum, P, and Bockaert, J. (1994) 5-hydroxytryptamine 1A receptor synthetic peptides Mechanisms of adenylyl cyclase inhibition. J. Biol. Chem. 269, 16,720–16,725.PubMedGoogle Scholar
  86. Wickman, K. and Clapham, D. E. (1995) Ion channel regulation by G proteins. Physwl. Rev 75, 865–885.Google Scholar
  87. Yatomi, Y., Arata, Y., Tada, S., Kume, S., and Ui, M. (1992) Phosphorylation of the inhibitory guanme-nucleotide-binding protein as a possible mechanism of inhibition by protein kinase C of agonist-induced Ca2+ mobilization in human platelet. Eur. J Biochem 205, 1003–1009.PubMedCrossRefGoogle Scholar
  88. Yuan, N., Friedman, J., Whaley, B. S., and Clark, R. B (1994) cAMP-dependent protein kinase and protein kinase C consensus site mutations of the β2-adrenergic receptor. J. Biol. Chem. 269, 23,032–23,038.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Paul R. Albertau
    • 1
  • Paola M. C. Lembo
    • 2
  • Stephen J. Morris
    • 1
  1. 1.Neuroscience Research InstituteUniversity of OttawaOntarioCanada
  2. 2.Department of Pharmacology and TherapeuticsMcGill UniversityMontréalCanada

Personalised recommendations