G Proteins and Animal Models of Parkinson’s Disease

  • Eric R. Marcotte
  • Ram K. Mishra
Part of the Neuromethods book series (NM, volume 31)


G protein-linked receptor function and regulation have received considerable attention owing to the pivotal role of these receptors in mediating cellular responses to chemical transmitters. Typically, alterations in neurotransmitter status can either result in reduced receptor activity, also known as receptor desensitization, or increased receptor activity, referred to as receptor supersensitivity. Receptor desensitization has perhaps been best characterized in the (3-adrenergic receptor system, where prolonged treatment with β-receptor agonists results in the decreased number and sensitivity of β-adrenergic receptors (Hadcock and Malbon, 1993). Although the role of G proteins and other signal transduction components in regulating receptor desensitization has long been appreciated, the study of receptor supersensitivity has generally focused more narrowly on changes in receptor levels and affinity. Receptor supersensitivity can be brought about in a number of ways, most commonly by receptor antagonist treatment or through denervation (Srivastava and Mishra, 1994). In both cases, the dopamine receptor system has received a great deal of attention and is generally accepted as the prototype for the study of receptor supersensitivity. The purpose of this chapter is to discuss the potential role of G proteins in mediating dopamine receptor supersensitivity.


Dopamine Receptor Adenylyl Cyclase Signal Transduction Component Receptor Supersensitivity Basal Ganglion Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albin, R. L., Young, A. B., and Penney, J. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12, 366–375.PubMedCrossRefGoogle Scholar
  2. Anholt, R R. H. (1994) Signal integration in the nervous system, adenylate cyclases as molecular coincidence detectors Trends Neurosci. 17, 37–41.PubMedCrossRefGoogle Scholar
  3. Bédard, P. J, Mancilla, G., Blanchette, P, Gagnon, C., and Di Paolo, T. (1992) Levodopa-induced dyskinesia-facts and fancy What does the MPTP monkey model tell us? Can. J Neurol Sci 19, 134–137PubMedGoogle Scholar
  4. Birnbaumer, L. (1993) Heterotrimeric G proteins molecular diversity and functional correlates. J Recept Res. 13, 19–26PubMedGoogle Scholar
  5. Blanchet, P. J., Boucher, R, and Bedard, P. J (1994) Excitotoxic lateral pallidotomy does not relieve L-DOPA-induced dyskinesia in MPTP parkinsoman monkeys. Brain Res. 650, 32–39.PubMedCrossRefGoogle Scholar
  6. Blunt, S B., Jenner, P, and Marsden, D. (1992) Autoradiographic study of striatal Dl and D2 dopamine receptors in 6-OHDA-lesioned rats receiving foetal ventral mesencephalic grafts and chronic treatment with L-DOPA and carbidopa Brain Res 582, 299–311PubMedCrossRefGoogle Scholar
  7. Buckley, N. J, ffrench-Mullen, J, and Caulfield, M. (1995) Use of antisense oligodeoxynucleotides and monospecific antisera to inhibit G protein gene expression in cultured neurons Biochem Soc Trans 23, 137–141.PubMedGoogle Scholar
  8. Butkerait, P and Friedman, E (1993) Repeated reserpine increases striatal dopamme receptor and guanine nucleotide binding protein mRNA J Neurochem 60, 566–571PubMedCrossRefGoogle Scholar
  9. Butkerait, P., Wang, H-Y, and Friedman, E. (1994) Increases in guanine nucleotide binding to striatal G proteins is associated with dopamine receptor supersensitivity. J Pharmacol Exp Ther 271, 422–428.PubMedGoogle Scholar
  10. Camps, M., Ambrosio, S, Ballarin, M, Reiriz, J., Blesa, R., and Mahy, N (1989) Dopamine Dl and D2 receptors visualized in MPTP treated C57 mice by in vitro autoradiography. lack of evidence of receptor modifications in parkmsonian mice Pharmacol Toxicol 65, 169–174PubMedCrossRefGoogle Scholar
  11. Chen, Y, Baez, M., and Yu, L (1994) Functional coupling of the 5-HT2C serotonin receptor to G proteins in Xenopus oocytes. Neurosci. Lett 179, 100–102.PubMedCrossRefGoogle Scholar
  12. Civelli, O., Bunzow, J R., and Grandy, D K. (1993) Molecular diversity of the dopamme receptors. Annu. Rev. Pharmacol Toxicol 32, 281–307CrossRefGoogle Scholar
  13. Clapham, D. E. and Neer, E. J. (1993) New role for G protein βgammadimers in transmembrane signalling. Nature 365, 403–406PubMedCrossRefGoogle Scholar
  14. Cote, L. and Crutcher, M. D. (1991) The basal ganglia, in Principles of Neural Science, 3rd ed. (Kandel, E. K., Schwartz, J. H., and Jessell, T. M., eds.), Elsevier, New York, pp. 648–659.Google Scholar
  15. Crossman, A R. (1990) A hypothesis on the pathophysiological mechanisms that underlie levodopa-or dopamine agonist-induced dyskinesia in Parkinson’s disease implications for future strategies in treatment. Mov Disord 5, 100–108.PubMedCrossRefGoogle Scholar
  16. De Klippel, N., Sarre, S., Ebinger, G., and Michotte, Y. (1993) Effect of M1-and M2-muscarinic drugs on striatal dopamine release and metabolism an in vivo microdialysis study comparing normal and 6-hydroxydopamine-lesioned rats Brain Res. 630, 57–64.PubMedCrossRefGoogle Scholar
  17. Di Chiara, G, Morelli, M, and Consolo, S. (1994) Modulatory functions of neurotransmitters in the striatum. ACh/dopamine/NMDA interactions Trends Neurosa. 17, 228–232CrossRefGoogle Scholar
  18. Dourmap, N. and Costentin, J. (1994) Involvement of glutamate receptors in the striatal enkephalin-induced dopamme. Eur. J Pharmacol 253, R9–R11PubMedCrossRefGoogle Scholar
  19. Ferre, S., O’Connor, W. T, Fuxe, K., and Ungerstedt, U (1993) The striopallidal neuron a main locus for adenosine-dopamine interactions in the brain J. Neurosci. 13, 5402–5406.PubMedGoogle Scholar
  20. Ferre, S., Popoli, P, Tinner-Staines, B., and Fuxe, K (1996) Adenosine A 1 receptor-dopamine D1 receptor interactioninthe rat limbic system: modulation of dopamine Dl receptor antagonist binding sites Neurosci Lett. 208, 109–112PubMedCrossRefGoogle Scholar
  21. Fredriksson, A, Plaznik, A, Sundstrom, E., and Archer, T. (1994) Effects of Dl and D2 agonists on spontaneous motor activity in MPTP treated mice. Pharmacol. Toxicol. 75, 36–41.PubMedCrossRefGoogle Scholar
  22. Gerfen, C. R. (1992a) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia Annu Rev. Neurosci. 15, 285–320.PubMedCrossRefGoogle Scholar
  23. Gerfen, R. (1992b) The neostriatal mosaic: multiple levels of compartmental organization Trends Neurosci. 15, 133–139.PubMedCrossRefGoogle Scholar
  24. Gerfen, R, McGinty, J. F, and Young III, W. S. (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031.PubMedGoogle Scholar
  25. Gerlach, M., Riederer, P., Przuntek, H., and Youdim, M. (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease Eur J Pharmacol Mol. Pharmacol. 208, 273–286.CrossRefGoogle Scholar
  26. Graham, W. C., Sambrook, M. A., and Crossman, A. R. (1993) Differential effect of chronic dopaminergic treatment on dopamine Dl and D2 receptors in the monkey brain in MPTP-induced parkmsonism. Brain Res 602, 290–303PubMedCrossRefGoogle Scholar
  27. Graybiel, A M (1990) Neurotransmitters and neuromodulaters in the basal ganglia Trends Neurosci 13, 244–254.PubMedCrossRefGoogle Scholar
  28. Griffiths, P. D, Perry, R. H., and Crossman, A R (1994) A detailed anatomical analysis of neurotransmitter receptors in the putamen and caudate in Parkinson’s disease and Alzheimer’s disease Neurosci Lett 169, 68–72PubMedCrossRefGoogle Scholar
  29. Groppetti, A., Ceresoli, G, Mandelli, V, and Parenti, M. (1990) Role of opiates in striatal D-l dopamine receptor supersensityvity induced by chronic L-DOPA treatment J. Pharmacol. Exp Ther 253, 950–956PubMedGoogle Scholar
  30. Gupta, S. K and Mishra, R K (1992) Effects of chronic treatment of haloperidol and clozapine on levels of G protein subunits in rat striatum. J Mol. Neurosci 3, 197–201PubMedGoogle Scholar
  31. Hadcock, J R and Malbon, C C. (1993) Agonist regulation of gene expression of adrenergic receptors and G proteins J Neurochem. 60, 1–9.PubMedCrossRefGoogle Scholar
  32. Herrera-Marschitz, M. and Ungerstedt, U (1984) Evidence that striatal efferents relate to different dopamine receptors Brain Res 323, 269–278PubMedCrossRefGoogle Scholar
  33. Hervé, D, Levi-Strauss, M, Marey-Semper, I, Verney, C., Tassm, J.-P, Glowinski, J, and Girault, J.-A. (1993) Golf and Gs in rat basal ganglia possible involvement of Golf in the coupling of Dopamine D1 receptor with adenylyl cyclase. J. Neurosa. 13, 2237–2248Google Scholar
  34. Hossain, M A. and Weiner, N (1995) Interactions of dopaminergic and GABAergic neurotransmission: impact of 6-hydroxydopamine lesions into the substantia nigra of rats J Pharmacol. Exp. Ther 275, 237–24.PubMedGoogle Scholar
  35. Hyman, S E and Nestler, E J (1993) The Molecular Foundations of Psychiatry. American Psychiatric Press, Inc., Washington, DC.Google Scholar
  36. Imperato, A., Obinu, M. C, and Gessa, G. L. (1994) Does dopamine exert a tonic inhibitory control on the release of stnatal acetylcholine in vivo? Eur.J. Pharmacol. 251, 271–279.PubMedCrossRefGoogle Scholar
  37. Jeste, D. V. and Caligiuri, M. P (1993) Tardive dyskinesia Schizophrenia Bull 19, 303–315.Google Scholar
  38. Jones, D T. and Reed, R R. (1989) Golf, an olfactory neuron specific-G protein involvedinodorant signal transduction. Science 244, 790–795PubMedCrossRefGoogle Scholar
  39. Kawaguchi, Y., Wilson, J., Augood, S. J, and Emson, P (1995) Stnatal interneurones, chemical, physiological and morphological characterization. Trends Neurosa 18, 527–535CrossRefGoogle Scholar
  40. Kebabian, J W and Calne, D B (1979) Multiple receptors for dopamine Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  41. Korczyn, A. D. (1995) Parkinson’s disease, in Pyschopharmacology The Fourth Generation of Progress, (Bloom, F E and Kupfer, D J. eds), Raven, New York, pp 1479–1484Google Scholar
  42. LaHoste, G. J. and Marshall, J. F (1992) Dopamine supersensihvity and D1/D2 synergism are unrelated to changes in striatal receptor density Synapse 12, 14–26PubMedCrossRefGoogle Scholar
  43. Lange, K. W (1990) Behavioural effects and supersensitivity in the rat following intranigral MPTP and MPP+ administration. Eur. J. Pharmacol 175, 57–61PubMedCrossRefGoogle Scholar
  44. Lau, Y.-S. and Fung, Y. K. (1986) Pharmacological effects of l-methyl-4-phenyl-l,2,3,6-tetrahydropyndine (MPTP) on striatal dpamine receptor system. Brain Res. 369, 311–315PubMedCrossRefGoogle Scholar
  45. Leiberman, J. A. and Koreen, A. R. (1993) Neurochemistry and neuroen-docrinology of schizophrenia: A selective review. Schizophrenia Bull, 19, 371–429.Google Scholar
  46. Lustig, K D., Conklin, B. R., Hermark, P., Taussig, R., and Bourne, H. R. (1993) Type II adenylylcyclase integrates coincident signals from Gs, G1, and Gq J Biol Chem, 268, 13,900–13,905.PubMedGoogle Scholar
  47. Marcotte, E. R., Sullivan, R M, and Mishra, R. K. (1994) Striatal G proteins, effects of unilateral 6-hydroxydopamine lesions. Neurosci. Lett 169, 195–198.PubMedCrossRefGoogle Scholar
  48. Marcotte, E R., Chugh, A., Barlas, C., and Mishra, R. K (1995) G protein expression in 6-hydroxydopamine lesioned rats and 1-methyl-4-phenyl-l,2,3,6-tetraphydropyndine treated mice. Soc Neurosci. 21, (Abstract).Google Scholar
  49. Marsden, C. D. (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatry 57, 672–681.PubMedCrossRefGoogle Scholar
  50. McGonigle, P, Boyson, S J., Reuter, S., and Molinoff, P B. (1989) Effects of chronic treatment with selective and nonselective antagonists on the subtypes of dopamine receptors. Synapse 3, 74–82PubMedCrossRefGoogle Scholar
  51. Mishra, R. K, Marshall, A. M, and Varmuza, S L. (1980) Supersensitivity in rat caudate nucleus effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes. Brain Res 200, 47–57.PubMedCrossRefGoogle Scholar
  52. Mons, N. and Cooper, D. M F. (1995) Adenylate cyclases critical foci in neuronal signaling. Trends Neurosci 18, 536–542.PubMedCrossRefGoogle Scholar
  53. Nutt, J. G (1990) Levodopa-induced dyskmesia review, observations, and speculations. Neurology 40, 340–345.PubMedGoogle Scholar
  54. Odagaki, Y. and Fuxe, K. (1995) Functional coupling of dopamine D2 and muscarinic chohnergic receptors to their respective G proteins assessed by agonist-induced activation of high affinity GTPase activity in rat striatal membranes. Biochem Pharmacol. 50, 325–335PubMedCrossRefGoogle Scholar
  55. O’Dowd, B. F. (1993) Structures of dopamine receptors. J. Neurochem. 60, 804–816CrossRefGoogle Scholar
  56. Oertel, W. H and Kupsch, A (1993) Pathogenesis and animal studies of Parkinson’s disease Curr Opinion Neurol Nuerosurg. 6, 323–332Google Scholar
  57. Ogawa, N., Mizukawa, K, Hirose, Y, Kajita, S., Ohara, S., and Watanabe, Y. (1987) MPTP-induced parkinsonian model in mice biochemistry, pharmacology and behaviour. Eur Neurol 26(Suppl. 1), 16–23.PubMedCrossRefGoogle Scholar
  58. Peroutka, S. J, DeLanny, L, Irwin, I., Ison, P.J., Ricaurte, G., Schlegel, J. R., and Langston, J W (1985) l-Methyl-4-phenyl-l,2,3,6-tetraphydropy-ridine (MPTP) induced dopamme D2 receptor hypersensitivity in the mouse is transient Res Commun. Chem Pathol Pharmacol 48, 163–171.PubMedGoogle Scholar
  59. Plata-Salaman, C. R., Wilson, C. D, Sonti, G., Borkoski, J P., and ffrench-Mullen, J. M. H. (1995) Antisense oligodeoxynucleotides to G protein α-subumt subclasses identify a transductional requirement for the modulation of normal feeding dependent on GsOA subunit Brain Res. Mol Brain Res 33, 72–78.PubMedCrossRefGoogle Scholar
  60. Qin, Z.-H., Zhou, L-W., Zhang, S. P, Wang, Y, and Weiss, B. (1995) D2 dopamine receptor antisense oligonucleotide inhibits the synthesis of a functional pool of D2 dopamme receptors. Mol. Pharmacol. 48, 730–737PubMedGoogle Scholar
  61. Raffa, R B., Martinez, R. P, and Connelly, C D. (1994) G protein antisense oligodeoxyribonucleotides and μ-opioid supraspinal antinociception. Eur. J Pharmacol. 258, R5–R7.PubMedCrossRefGoogle Scholar
  62. Rajput, A. H. (1992) Frequency and cause of Parkinson’s disease. Can. J. Neurol. Sci 19, 103–107PubMedGoogle Scholar
  63. Robertson, H. A. (1992a) Synergistic interactions of Dl-and D2-selective dopamine agonists in animal models for Parkinson’s disease sites of action and implications for the pathogenesis of dyskinesias. Can. J. Neurol Sci 19, 147–152PubMedGoogle Scholar
  64. Robertson, H. A (1992b) Dopamine receptor interactions some implications for the treatment of Parkinson’s disease Trends Neurosa. 15, 201–205CrossRefGoogle Scholar
  65. Ross, E. M. (1992) G proteins and receptorsinneuronal signalling, in An Introduction to Molecular Neurobiology (Hall, Z W, ed.), Sinauer Associates, Sunderland, pp. 181–207Google Scholar
  66. Schettini, G., Ventra, C, Florio, T, Grimaldi, M., Meucci, O., and Marino, A (1992) Modulation by GTP of basal and agonist-stimulated striatal adenylate cyclase activity following chronic blockade of Dl and D2 dopamine receptors: involvement of G proteins in the development of receptor supersensitivity. J. Neurochem. 59, 1667–1674.PubMedCrossRefGoogle Scholar
  67. Seeman, P. and Niznik, H. B. (1990) Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 4, 2737–2744.PubMedGoogle Scholar
  68. Sibley, D. R. and Monsma, F. J, Jr. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. Sci 13, 61–69.PubMedCrossRefGoogle Scholar
  69. Silvia, C. P., King, G R., Lee, Xue, Z.-Y., Caron, M. G., and Ellinwood, E H. (1994) Intrastriatal administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine Mol Pharmacol 46, 51–57PubMedGoogle Scholar
  70. Sokoloff, P. and Schwartz, J-C. (1995) Novel dopamine receptors half a decade later. Trends Pharmacol. Sci 16, 269–285CrossRefGoogle Scholar
  71. Srivastava, L. and Mishra, R K. (1994) Dopamine receptor gene expression effects of neuroleptics, denervation, and development, in Dopamine Receptor Function and Pharmacology (Nizrak, H, ed), Marcel Dekker, New York, N.Y. pp. 437–457Google Scholar
  72. Sunahara, R. K., Seeman, P., Van Tol, H. H. M., and Niznik, H. (1993) Dopamine receptors and antipsychotic drug response Br. J. Psychiatry 163(Suppl. 22), 31–38Google Scholar
  73. Sundstrom, E., Fredriksson, A., and Archer, T. (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice a model for Parkinson’s disease. Brain Res. 528, 181–188.PubMedCrossRefGoogle Scholar
  74. Surmeier, D J, Reiner, A, Levine, M S., and Ariano, M. A. (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci 16, 299–305PubMedCrossRefGoogle Scholar
  75. Tang, T, Kiang, J G, Cote, T. E., and Cox, B M. (1995) Antisense oligodeoxynucleotide to the Gi2 protein a subunit sequence inhibits an opioid-induced increase in the intracellular free calcium concentration in ND8-47 neuroblastoma x dorsal root ganglion hybrid cells Mol. Pharmacol. 48, 189–193.PubMedGoogle Scholar
  76. Tanner, M T (1986) Drug-mduced movement disorders (tardive dyskinesia and dopa-induced dyskinesia), in Etrapyramidal Disorders, 49th ed. (Vinken, P J, Bruyn, G. W, and Klawans, H. L, eds), Elsevier Science Publishers, Amsterdam pp. 185–203Google Scholar
  77. Tirone, F., Parenti, M, and Groppetti, A. (1985) Opiate and dopamine stimulate different GTPase in striatum evidence for distinct modulatory mechanisms of adenylate cyclase J Cyclic Nucl Protein Phos. Res 10, 327–339Google Scholar
  78. Wang, H.-Y., Undie, A. S., and Friedman, E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat stnatum. possible role in dopamine-mediated mositol phosphate formation Mol. Pharmacol 48, 988–994PubMedGoogle Scholar
  79. Watson, J. B., Coulter II, P M, Margulies, J E., de Lecea, L., Danielson, P E., Erlander, M. G, and Sutcliffe, J. G. (1994) G protein gamma7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J. Neurosci. Res. 39, 108–116PubMedCrossRefGoogle Scholar
  80. Weiss, B, Zhou, L W, Zhang, S. P., and Qin, Z H. (1993) Antisense oligodeoxynucleotide inhibits D2 dopamine receptor-mediated behavior and D2 messenger RNA Neuroscience 55, 607–612PubMedCrossRefGoogle Scholar
  81. Yoshida, M. (1991) The neuronal mechanism underlying parkmsonism and dyskinesia differential roles of the putamen and caudate nucleus. Neurosa. Res 12, 31–40CrossRefGoogle Scholar
  82. Zhang, M and Creese, I (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates Neurosci Lett. 161, 223–226PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Eric R. Marcotte
    • 1
  • Ram K. Mishra
    • 2
  1. 1.Department of Psychiatry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of PsychiatryMcMaster UniversityHamiltonCanada

Personalised recommendations