Skip to main content

Selective Antagonism of Receptor Signaling Using Antisense RNA to Deplete G-Protein Subunits

  • Protocol
  • 553 Accesses

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 84))

Abstract

The molecular identification and characterization of the components of receptor-signaling pathways has revealed a striking redundancy and diversity of signaling elements. For example, G protein-coupled receptors bind to a diversity of ligands, ranging from classical low-molecular-weight monoammes like serotonin (5HT) or dopamine, to large glycoproteins such as gonadotropins (1). Within a given receptor family, multiple subtypes of receptors have been identified: for example, the serotonin-receptor family comprises over 15 distinct receptors (2). An analogous multiplicity of subtypes extsts within the families of G proteins (3,4) and effecters, such as phospholipases, adenylyl cyclases, protein kinases, and ion channels (59). Indeed, low-stringency cDNA-screening techmques have led to the identification of homologs of unknown function, such as orphan receptors (10). Biochemical characterization of purified proteins in vitro, or by overexpression of then cDNAs in transfected cell lines has been instrumental in defining the properties of these signal-transduction elements. However, these approaches may distort the interactions that occur in situ because of abnormally high expression of the various signaling components and nonphysiological optimization of assay conditions. Pharmacological approaches have been very useful in defining the physiological roles of cloned receptors, but are limited by the availability of specific receptor agonists and antagonists.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Strader C. D, Fong T. M, Tota M. R, Underwood D., and Dixon R. A (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63, 101–132.

    Article  PubMed  CAS  Google Scholar 

  2. Hoyer D, Clarke D. E., Fozard J. R, Hartig P. R, Martin G. R, Mylecharme E J., Saxena P R., and Humphrey P. P. A (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamme (serotonm) Pharmacol Rev 46, 157–203

    PubMed  CAS  Google Scholar 

  3. Birnbaumer L. (1992) Receptor-to-effector signaling through G proteins roles for βγdimers as well as α subunits. Cell 71, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  4. Neer E J (1995) Heterotrimeric G proteins organizers of transmembrane signals Cell 80, 249–257.

    Article  PubMed  CAS  Google Scholar 

  5. Exton J. H. (1994) Phosphomositide phosphohpases and G proteins in hormone action Annu Rev Physlol 56, 349–369.

    Article  CAS  Google Scholar 

  6. Tang W. and Gilman A. G. (1992) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Cell 70, 869,870.

    Article  Google Scholar 

  7. Sterne-Marr R. and Benovic J. L. (1995) Regulation of G protein-coupled receptors by receptor kinases and arrestins Vitamin Horm 51, 193–234.

    Article  CAS  Google Scholar 

  8. Newton A. C. (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270, 28,495–28,498.

    Article  PubMed  CAS  Google Scholar 

  9. Wickman K and Clapham D. E (1995) Ion channel regulation by G proteins Physiol. Rev 75, 865–885.

    PubMed  CAS  Google Scholar 

  10. Albert P. R. (1992) Molecular biology of the 5-HTIA receptor low stringency cloning and eukaryotic expression. J Chem Neuroanat 5, 283–287.

    Article  PubMed  CAS  Google Scholar 

  11. Clapham D E. and Neer E J. (1993) New roles for G-protein βγ-dimers in transmembrane signalling. Nature 365, 403–406.

    Article  PubMed  CAS  Google Scholar 

  12. Albert P. R and Moms S J. (1994) Antisense knockouts* molecular scalpels for the dissection of signal transduction. Trends Pharmacol Sci 15, 250–254

    Article  PubMed  CAS  Google Scholar 

  13. Hescheler J. and Schultz G. (1994) Heterotrimeric G proteins mvolved in the modulation of voltage-dependent calcium channels of neuroendocrme cells Ann N.Y.Acad.Sci 733, 306–312

    Article  PubMed  CAS  Google Scholar 

  14. Paternak G. W. and Standlfer K. M. (1995) Mapping op1o1d receptors using antisense ollgodeoxynucleotides correlating their molecular biology and pharmacology Trends Pharmacol Sci 16 344–350.

    Article  Google Scholar 

  15. Crooke S T (1992) Therapeutic applications of ollgonucleotides Anna Rev Pharmacol Toxicol 32, 329–376

    Article  CAS  Google Scholar 

  16. Wahlestedt C (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 15, 42–46.

    Article  PubMed  CAS  Google Scholar 

  17. Wagner R. W (1994) Gene 1nh1blt1on using antisense ollgodeoxynucleotides Nature 372, 333–335.

    Article  PubMed  CAS  Google Scholar 

  18. Hélène C., Thuong N. T, and Harel-Bellan A. (1992) Control of gene expression by triple helix-forming oligonucleotides The antigene strategy. Ann N Y Acad Sci 660, 27–36

    Article  PubMed  Google Scholar 

  19. Izant J G and Welntraub H (1985) Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense Science 229, 345–352.

    Article  PubMed  CAS  Google Scholar 

  20. Hélène C and Touline J.-J. (1990) Specific regulation of gene expression by antisense, sense, and antigene nucleic acids Biochlm Biophys. Acta 1049, 99–125.

    Google Scholar 

  21. Murray J A H and Crockett N (1992) Antisense techniques, an overview, in Antisense RNA and DNA (Murray, ed), Wiley-Liss New York.

    Google Scholar 

  22. Albert P. R. (1994) Heterologous expression of G protein-linked receptors in pituitary and flbroblast cell lines Vltam Horm 48, 59–109.

    CAS  Google Scholar 

  23. Liu Y. F, Jakobs K H, Rasenick M. M., and Albert P R (1994) G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4Cl pituitary cells. J Biol Chem 269, 13,880–13,886.

    PubMed  CAS  Google Scholar 

  24. Brantl S. and Wagner E. G. (1994) Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing an in vitro study of plasmidpIP501 EMBO J 13, 3599–3607

    PubMed  CAS  Google Scholar 

  25. Wang S and Dolnlck B. J (1993) Quantitative evaluation of intracelluar sense:antisense RNA hybrid duplexes. Nut Acids Res 21, 4383–4391.

    Article  CAS  Google Scholar 

  26. Nishikura K and Murray J. M. (1987) Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells Mol Cell Biol 7, 639–649

    PubMed  CAS  Google Scholar 

  27. Sheey R. E., Kramer M, and Hiatt W. R. (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Nat Acad Sci 85, 8805–8809

    Article  Google Scholar 

  28. Denhardt D. T (1992) Mechanism of action of antisense RNA Sometime inhibition of transcription, processing, transport, or translation Ann N Y Acad Sci 660, 70–76.

    Article  PubMed  CAS  Google Scholar 

  29. Rebagllati M. R. and Melton D A (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity Cell 48, 599–605

    Article  Google Scholar 

  30. Feng B. and Denhardt D T (1992) Inhibition of processing of the primary transcript of the gene encoding tissue inhibitor of metalloprotelnases (TIMP) by antisense TIMP RNA in mouse 3T3 cells. Ann N Y Acad SCi 660, 280–282

    Article  PubMed  CAS  Google Scholar 

  31. Kim S K and Wold B J. (1985) Stable reduction of thymldlne kinase activity in cells expressing high levels of anti-sense RNA. Cell 42, 129–138

    Article  PubMed  CAS  Google Scholar 

  32. Lm Z. and Carnnchael G G (1994) Nuclear antisense RNA An efficient new method to inhibit gene expresstion. Mel Biotechnol 2, 107–118.

    Article  Google Scholar 

  33. Kleuss C., Hescheler J, Ewel C, Rosenthal W, Shultz G., and Wittig B. (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcmm currents. Nature 353, 43–48.

    Article  PubMed  CAS  Google Scholar 

  34. Kleuss C., Scherubl H., Hescheler J., Shultz G, and Wittig B (1992) Different β-subunits determme G-protein interaction with transmembrane receptors. Nature 358, 424–426.

    Article  PubMed  CAS  Google Scholar 

  35. Kleuss C., Scherubl H, Hescheler J, Shultz G., and Wittig B. (1993) Selectivity in signal transductron determined by γ subunits of heterotrimetric G proteins Science 259, 832–834

    Article  PubMed  CAS  Google Scholar 

  36. Lledo P-M., Homburger V, Bockaert J, and Vincent J-D (1992) Differential G protein-mediated coupling of D2 dopamme receptors to K+ and Ca2+ currents in rat anterior pmutary cells. Neuron 8, 455–463

    Article  PubMed  CAS  Google Scholar 

  37. Baertscht A. J., Audrgrer Y, Lledo P.-M., Israel J-M, Bockaert J., and Vincent J.-D. (1992) Dialysts of lactotropes with antisense oligonucleotides assigns guanine nucleotide binding protein subtypes to their channel effecters Mol Endocrinol 6, 2257–2265.

    Article  Google Scholar 

  38. Montinayeur J.-P., Guiramand J, and Borrelh E (1993) Preferential coupling between dopamme D2 receptors and G-proteins Mol Endocrinol 7, 161–170

    Article  Google Scholar 

  39. Campbell V, Berrow N, and Dolphin A. C (1993) GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein G(0): antisense oligonucleotide studies J Physzol London 470, 1–11.

    CAS  Google Scholar 

  40. Berrow N. S., Campbell V., Fitzgerald E. M., Brickley K, and Dolphm A C (1995) Antisense depletron of beta-subunits modulates the brophysrcal and pharmacologtcal properties of neuronal calcmm channels. J Physlol London 482, 481–491.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Albert, P.R., Morris, S.J. (1998). Selective Antagonism of Receptor Signaling Using Antisense RNA to Deplete G-Protein Subunits. In: Bar-Sagi, D. (eds) Transmembrane Signaling Protocols. Methods In Molecular Biology™, vol 84. Humana Press. https://doi.org/10.1385/0-89603-488-7:107

Download citation

  • DOI: https://doi.org/10.1385/0-89603-488-7:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-488-4

  • Online ISBN: 978-1-59259-568-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics