Peptide Recognition Mechanisms of Eukaryotic Signaling Modules

  • Chi-Hon Lee
  • David Cowburn
  • John Kuriyan
Part of the Methods In Molecular Biology™ book series (MIMB, volume 84)

Abstract

The formation of specific protein—protein interactions is one of the key mechanisms for signal transduction mediated by tyrosme phosphorylation. These intermolecular interactions target signaling proteins to particular cellular locations and modulate the enzymatic activities that further propagate the signal. A distinctive characteristic of the pathways that are mitiated by tyrosme phosphorylation is that target recognition and catalytic activity are usually functions of separate domains within the signaling molecules that participate in these pathways. Each of the signaling molecules contains one or more of a set of modular peptide-binding domains that are responsible for generating protein-protein interactions. Such peptide-recognition domains are modular in both structural and functional respects: They are capable of folding correctly when removed from the parent protein, and they can usually recognize their targets even when isolated.

Keywords

Tyrosine Glycine Proline Lysine Arginine 

References

  1. 1.
    Sadowskl I, Stone J. C, and Pawson T. (1986) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of fujinami sarcoma virus p130gag-fps Mol Cell Biol 6,4396–4408Google Scholar
  2. 2.
    Moran M F., Koch C A., Anderson D, Ellis C, England L., Martin G S., and Pawson T. (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Nutl Acad Sci USA 87, 8622–8626CrossRefGoogle Scholar
  3. 3.
    Pawson T. and Schlessinger J (1993) SH2 and SH3 domains. Curr Biol 3, 434–442.PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen G B., Ren R., and Baltimore D (1995) Modular binding domains in signal transduction proteins Cell 80, 237–248PubMedCrossRefGoogle Scholar
  5. 5.
    Pawson T (1995) Protein modules and signalling networks. Nature 373, 573–580PubMedCrossRefGoogle Scholar
  6. 6.
    Kavanaugh W. M and Wllhams L T (1994) An alternative to SH2 domains for binding tyrosme-phosphorylated growth factor receptors. Science 266, 1862–1865PubMedCrossRefGoogle Scholar
  7. 7.
    Blarkre P. et al. (1994) A region in She distinct from the SH2 domain can bind tyrosme-phosphorylated growth factor receptors. J Biol Chem 269, 32,03l–32,034Google Scholar
  8. 8.
    Eck M. J, Dhepaganon S, Trub T., Nolte R T., and Shoelson S E., (1996) Structure of the IRS-l PTB domain bound to the Juxtamembrane region of the Insulin receptor. Cell 85, 695–705.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou M-M, Huang B., Olejniczak E. T, Meadows R. P, Shuker S B, Miyazakt M., Trub T., Shoelson S. E., and Fesrk S W. (1996) Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-l PTB domain. Nature Struct Biol 3, 388–393PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou M M., Ravichandran K S, Olejniczak E F, Petros A M, Meadows R. P, Sattler M., Harlan J E, Wade W. S, Burakoff S J., and Fesrk S W. (1995) Structure and ligand recognitron of the phosphotyrosme binding domain of Shc Nature 378, 584–592.PubMedCrossRefGoogle Scholar
  11. 11.
    Doyle D A, Lee A., Lewis J., Kim E., Sheng M, and MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain-molecular basis of peptide recognition by PDZ domains. Cell 85, 1067–1076PubMedCrossRefGoogle Scholar
  12. 12.
    Chen H. I. and Sudol M. (1995) The WW domain of Yes-assoctated protein binds a proline-rich ligand that differs from the consensus establtshed for Src homology 3-binding modules. Proc Natl Acad Sci USA 92, 7819–7823.PubMedCrossRefGoogle Scholar
  13. 13.
    Matsuda M, Mayer B J, Fukui Y, and Hanafusa H. (1990) Binding of Transforming Protein, P47gag-crk, to a Broad Range of Phosphotyrosme-Containing Proteins. Science 248, 1537–1539.PubMedCrossRefGoogle Scholar
  14. 14.
    Mayer B J, Jackson P. K, and Baltimore D. (1991) The noncatalytic src homology region 2 segment of abl tyrosme kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc Natl Acad Sci USA 88 627–631PubMedCrossRefGoogle Scholar
  15. 15.
    Pawson T. (1992) Tyrosme kinases and their interactions with signalling molecules. Curr Open Genet Dev 2, 4–12CrossRefGoogle Scholar
  16. 16.
    Overdum M., Rros C B., Mayer B J, Baltimore D., and Cowburn D (1992) Three-dimensional solution structure of the src homology 2 domain of c-abl. Cell 70, 697–704CrossRefGoogle Scholar
  17. 17.
    Booker G W., Breeze A L., Downing A K., Panayotou G., Gout I., Waterfield M. D., and Campbell I. D (1992) Structure of an SH2 domain of the p85α submit of phosphatrdylinosrtol-3-OH kinase Nature 358, 684–687.PubMedCrossRefGoogle Scholar
  18. 18.
    Waksman G., Kommos D, Robertson S. R., Pant N, Baltimore D., Barge R B, Cowburn D, Hanafusa H., Mayer B J, Overdum M, Resh M. D., Rios C. B., Silverman L., and Kurryan J. (1992) Crystal structure of the phosphotyrosme recogninon domain SH2 of v-src complexed with tyrosine-phosphorylated peptides Nature 358, 646–653.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen B, Yoakrm M, Prwnica-Worms H, Roberts T, and Schaffhausen B S (1990) Tyrosme phosphorylation is a signal for the trafficking of pp85, a polypeptide associated with phosphatrdylinosrtol kinase activity. Proc Natl Acad Sci USA 87, 4458–4462PubMedCrossRefGoogle Scholar
  20. 20.
    Kazlauskas A., Kashishtan A, Cooper J. A., and Valius M. (1992) GTPase activating protein and phosphatidylinositol 3-kinase bind to a distinct region of the platelet-dertved growth factor receptor βsubunit. Mol Cell Biol 12, 2534–2544.PubMedGoogle Scholar
  21. 21.
    Talinadge D A., Freund R, Young A. T, Dahl J., Dawe C. J., and Benjamin T. L. (1989) Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinostiol 3-kinase and optimal tumorigenests. Cell 59, 55–65.CrossRefGoogle Scholar
  22. 22.
    Cantley L C, Auger K. R, Carpenter C, Duckworth B., Graztam A., Kapeller R., and Soltoff S. (1991) Oncogenes and signal transduction. Cell 64, 281–302.PubMedCrossRefGoogle Scholar
  23. 23.
    Songyang Z, Shoelson S E, McGlade J, Olivter P, Pawson T., Bustelo X R, Barbactd M., Sabe H., Hanafusa H, Yi T., Ren R., Baltimore D., Ratnofsky S., Feldman R. A., and Cantley L. C. (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk and Vav Mol. Cell. Biol. 14, 2777–2785.PubMedGoogle Scholar
  24. 24.
    Songyang Z, Shoelson S. E., Chaudhun M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J, Neel B. G., Birge R. B, Fajardo, J E., Chou M.M. Hanafusa H., Schaffhausen B., and Cantley L C (1993) SH2 domains recognize spectfic phosphopeptide sequences. Cell 72, 767–778.PubMedCrossRefGoogle Scholar
  25. 25.
    Waksman G, Shoelson S E, Pant N, Cowburn D., and Kuriyan J (1993) binding of a high affinity phophotyrosyl peptide to the src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72, 779–790.PubMedCrossRefGoogle Scholar
  26. 26.
    Eck M., Shoelson S E., and Harrison S. C. (1993) Recognition of a high affinity phosphotyrosyl peptide by the Src homology 2 domain of p561ck. Nature 362, 87–91PubMedCrossRefGoogle Scholar
  27. 27.
    Songyang Z, Gtsh G., Mbamulu G., Pawson T., and Cantley L. C (1995) A single point mutation switches the specificity of group III src homology (SH) 2 domains to that of group I SH2 domains. J Biol Chem 270, 26,029–26,032PubMedCrossRefGoogle Scholar
  28. 28.
    Lee C.-H., Kommos D, Jacques S, Margohs B., Schlessinger J., Shoelson S. E, and Kurtyan J. (1994) Crystal structures of peptide complexes of the aminoterminal SH2 domain of the Syp tyrosme phosphatase. Structure 2, 423–438.PubMedCrossRefGoogle Scholar
  29. 29.
    Pascal S. M., Singer A U, Gish G., Yamazaki T., Shoelson S. E., Pawson T, Kay L. E., and Forman-Kay J. D. (1994) Nuclear magnetic resonance structure of an SH2 domain of phospholipase C-y1 complexed with a high affinity binding peptide Cell 77, 461–472.PubMedCrossRefGoogle Scholar
  30. 30.
    Rahuel J, Gay B., Erdmann D., Strauss A., Garcia-Echeverrta C., Furet P., Caravatti G., Fretz H., Schoepfer J., and Gruitter M. (1996) Structural basis for specificity of GRB2-SH2 revealed by a novel ligand binding mode. Nat Struct Biol 3, 586–589.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou M. M., Meadows R. P., Logan T. M., Yoon H. S., Wade W. S, Ravtchandran K S., Burakoff S. J., and Fesik S. W. (1995) Solution structure of the She SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor Proc Natl Acad Sci. USA 92, 7784–7788.PubMedCrossRefGoogle Scholar
  32. 32.
    Matgnan S, Gurlloteau J-P, Fromage N., Arnoux B, Becquart J., and Ducruix A (1995) Crystal structure of the mammahan GRB2 adaptor. Science 268, 291–293CrossRefGoogle Scholar
  33. 33.
    Gosser Y. Q., Zheng J., Overdum M., Mayer B. J., and Cowburn D. (1995) The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Structure 3, 1075–1086PubMedCrossRefGoogle Scholar
  34. 34.
    Hatada M. H., Lu X., Laird E R., Green J, Morgenstern J P., Lou M., Marr C. S., Philips T. B., Ram M. K., Thertault K., Zoller M. J., and Karas J. L. (1995) Molecular basis for the interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor Nature 377, 32–38PubMedCrossRefGoogle Scholar
  35. 35.
    Eck M., Atwell S. K., Shoelson S. E, and Harrison S. C. (1994) Crystal structure of the regulatory domains of the Src-family tyrosme kinase lck. Nature 368, 764–769.PubMedCrossRefGoogle Scholar
  36. 36.
    Eck M J., Pluskey S, Trub T, Harrison S C, and Shoelson S. E. (1996) Spatial constraints on the recogintion of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature 379, 277–280PubMedCrossRefGoogle Scholar
  37. 37.
    Fantl W J, Escobedo J. A, Martin G A, Turck C W, Rosario M, McCormick F., and Williams L T (1992) Distinct phosphotyrosmes on a growth factor receptor bind to specific molecules that mediate different signalling pathways. Cell 69, 413–423.PubMedCrossRefGoogle Scholar
  38. 38.
    Kashishian A., Kazlauskas A, and Cooper J. A (1992) Phosphorylation sites in the PDGF receptor with different specificties for binding GAP and PI3 kinase in VIVO. EMBO J 11, 1373–1381.PubMedGoogle Scholar
  39. 39.
    Ladbury J. E., Lemmon M. A., Zhou M., Green J., Botfield M C., and Schlessinger J (1995) Measurement of the binding tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc Natl Acad Sci USA 92, 3199–3203.PubMedCrossRefGoogle Scholar
  40. 40.
    Lemmon M A and Ladbury J. E., (1994) Thermodynamic studies of tyrosyl-phosphopeptide binding to the SH2 domain of p56lck. Biochemistry 33, 5070–5076PubMedCrossRefGoogle Scholar
  41. 41.
    Felder S., Zhou M, Hu P., Urena J, Ullrich A, Chaudhuri M, White M., Shoelson S. E., and Schlessinger J. (1993) SH2 domains exhibit high-affinity binding to tyrosme-phosphorylated peptides yet also exhibit rapid dtssoctation and exchange Mol Cell Biol 13, 1449–1455PubMedGoogle Scholar
  42. 42.
    Mayer B. J., Jackson P. K, Van Etten R A, and Baltimore D. (1992) Point mutations in the abl SH2 domain coordmately impair phosphotyrosme binding in vitro and transforming ability in vivo. Mol Cell Biol 12, 609–618PubMedGoogle Scholar
  43. 43.
    Burley S. K and Petsko G A (1986) Amino-aromatic interactions in proteins FEBS Lett 203, 139PubMedCrossRefGoogle Scholar
  44. 44.
    Nolte R. T., Eck M J., Schlessinger J, Shoelson S E., and Harrison S C. (1996) Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes Nature Struct Biol 3, 364–313PubMedCrossRefGoogle Scholar
  45. 45.
    Case R. D, Piccione E., Wolf G, Lechleider R J., Chaudhuri M, Neel B. G., and Shoelson S E (1994) SH-PTP2 SH2 domain binding specificity IS defined by direct interactions with PDGF β-receptor, EGF receptor, and IRS-l derived phosphopeptides J Biol Chem 269, 10,467–10,474.PubMedGoogle Scholar
  46. 46.
    Pascal S. M, Yamazakt T., Singer A. U, Kay L E, and Forman-Kay J. D (1995) Structural and dynamic characterization of the phosphotyrosme binding 45. region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange and chemical shift approaches. Biochemistry 34, 11,353–l1,362.PubMedCrossRefGoogle Scholar
  47. 47.
    Marengere L. E. M, Songyang Z., Gish G D., Schaller M D., Parsons J T, Stem M. J., Cantley L C, and Pawson T (1994) SH2 domain specificity and activity modified by a single residue Nature 369, 502–505.PubMedCrossRefGoogle Scholar
  48. 48.
    Gustafson T A., He W, Craparo A., Schaub C. D., and O’Neill T J (1995) Phosphotyrosme-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insuln receptor via novel non-SH2 domain Met Cell. Biol l5 2500–2508Google Scholar
  49. 49.
    Cicchetti P, Mayer B J., Then G., and Baltimore D (1992) Identification of a protein that binds to the SH3 region of abl and is similar to Bcr and GAP-rho. Science 257, 803–806PubMedCrossRefGoogle Scholar
  50. 50.
    Ren R., Mayer B. J., Cicchetti P., and Baltimore D. (1993) Identification of a ten-amino acid proline-rich SH3 binding site Science 259, 1157–1161PubMedCrossRefGoogle Scholar
  51. 51.
    Yu H, Rosen M K, Shin T B, Seidel-Duggan C, Brugge J. S., and Schreiber S. L (1992) Solution structure of the SH3 domain of Src and Identification of Its Ligand-binding Site. Science 258, 1665–1668PubMedCrossRefGoogle Scholar
  52. 52.
    Musacchio A., Noble M, Pauptit R, Wierenga R, and Saraste M. (1992) Crystal structure of a Src-homology 3 (SH3) domain Nature 359, 851–855PubMedCrossRefGoogle Scholar
  53. 53.
    Yu H., Chen J K, Feng S, Dalgamo D. C, Brauer A W, and Schreiber S L (1994) Structural basis for the binding of proline-rich peptides to SH3 domains Cell 76, 933–945.PubMedCrossRefGoogle Scholar
  54. 54.
    Musacchio A., Saraste M, and Wilinanns M (1994) High-resolution crystal structures of tyrosme kinase SH3 domains complexed with proline-rich peptides. Nature Struct Biol 1, 546–551PubMedCrossRefGoogle Scholar
  55. 55.
    Lim W A. and Richards F. M (1994) Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nature Struct Biol 1, 221–225PubMedCrossRefGoogle Scholar
  56. 56.
    Feng S, Chen J K., Yu H., Simon J. A., and Schreiber S A (1994) Two binding orientations for peptides to the Src SH3 domain development of a general model for SH3-ligand interactions Science 266, 1241–1247PubMedCrossRefGoogle Scholar
  57. 57.
    Lim W. A, Richards F M, and Fox R O. (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379PubMedCrossRefGoogle Scholar
  58. 58.
    Goudreau N., Camille F., Duchesne M., Parker F., Tocque B., Garbay C, and Roques B. P. (1994) NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline rich peptide from SOS. Nature Struct Biol 1, 898–907.PubMedCrossRefGoogle Scholar
  59. 59.
    Terasawa H, Kohda D., Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishn S., Mandiyan V., Ullrich A, Schlessinger J., and Inagaki F (1994) Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guamne nucleotide releasing factor SOS. Nature Struct Biol 1, 891–897.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee C.-H, Saksela K., Mirza U. A., Chait B. T, and Kuriyan J. (1996) Crystal structure of the conserved core of HIV-l Nef complexed with a Src family SH3 domain. Cell 85, 93l–942CrossRefGoogle Scholar
  61. 61.
    Lee C.-H., Leung B., Lemmon M A, Zheng J, Cowburn D, Kuriyan J, and Saksela K. (1995) A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-l Nef protein. EMBO J 14, 5006–5015.PubMedGoogle Scholar
  62. 62.
    Cheng G, Ye Z. S, and Baltimore D. (1994) binding of Bruton’s tyrosme kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad. Sci USA 91, 8152–8155.PubMedCrossRefGoogle Scholar
  63. 63.
    Rtckles R., Botfield M. C., Weng Z., Taylor J., Green O. M., Brugge J., and Zoller M. J. (1994) Identification of Src, Fyn, Lyn, PI3K, and Abl SH3 domain ligands using phage display libraries. EMBO J 13, 5598–5604Google Scholar
  64. 64.
    Knudsen B, Zheng J., Feller S. M., Mayer J. P., Burrell S. K., Cowburn D, and Hanafusa H (1995) Affinity and specificity requirements for the first Src homology 3 domain of the Crk protein. EMBO J 14, 2191–2198PubMedGoogle Scholar
  65. 65.
    Wu X, Knudsen B., Feller S. M., Zheng J., Sah A., Cowburn D, Hanafusa H, and Kuriyan J (1995) Structural basis for the specific interaction of lysmecontaming proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3, 215–226.PubMedCrossRefGoogle Scholar
  66. 66.
    Feng S., Kasahara C, Rtckles R. J., and Schretber S. L. (1995) Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl. Acad Sci USA 92, 12,408–12,415.PubMedCrossRefGoogle Scholar
  67. 67.
    Trono D (1995) HIV accessory proterns. leading roles for the supporting cast. Cell 82, 189–192.PubMedCrossRefGoogle Scholar
  68. 68.
    Saksela K, Cheng G., and Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ vu-uses but not for down-regulation of CD4. EMBO J 14, 484–491PubMedGoogle Scholar
  69. 69.
    Griesiek S, Bax A., Clore G. M., Gronenborn A. M., Hu J-S., Kaufman J, Palmer I., Stahl S J., and Wingfield P. T. (1996) The solution structure of HIV-1 Nef reveals an unexpected fold and permits dehneation of the binding surface for the SH3 domain of Hck tyrosme protein kinase. Nature Struct Biol 3, 340–345.CrossRefGoogle Scholar
  70. 70.
    Alexandropoulos K and Baltimore D. (1996) Coordinate activation of c-Src by SH3-and SH2-binding sites on a novel pl30Cas-related protein, Sin Genes Dev 10, 1341–1355CrossRefGoogle Scholar
  71. 71.
    Abrams C S. and Zhao W (1995) SH3 domains spectfically regulate kinase activity of expressed Src family proteins. J Biol.Chem 270, 333–339.PubMedCrossRefGoogle Scholar
  72. 72.
    Superti-Furga G. and Courtnetdge S. A (1995) Structure-function relationships in Src family and related protein kinases. Bioessays 17, 321–330PubMedCrossRefGoogle Scholar
  73. 73.
    Weiss A. (1993) T Cell Antigen Receptor Signal Transduction. A Tale of Tads and Cytoplasmic Protein-Tyrosme kinases. Cell 73, 209–212.PubMedCrossRefGoogle Scholar
  74. 74.
    Wange R. L, Malek S N, Desiderio S., and Samelson L. E (1993) Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells. J Biol Chem 268, 19,797–19,801.PubMedGoogle Scholar
  75. 75.
    Isakov N, Wange R L, Burgess W H, Watts J D., Aebersold R., and Samelson L. E (1995) ZAP-70 binding specificity to T cell receptor tyrosinebased activation motifs. the tandem SH2 domains of ZAP-70 bind distinct tyrosme-based activation motifs with varying affinity. J Exp Med 181, 375–380PubMedCrossRefGoogle Scholar
  76. 76.
    Feng G.-S., Hut C.-C., and Pawson T. (1993) SHZcontaining phosphotyrosme phosphatases as a target of protein-tyrosine kinases. Science 259, 1607–1614PubMedCrossRefGoogle Scholar
  77. 77.
    Wolfgang-Vogel, Lammers R., Huang J., and Ullrich A. (1993) Activation of a phosphotyrosme phosphatase by tyrosme phosphorylation. Science 259, 1611–1614CrossRefGoogle Scholar
  78. 78.
    Dechert U, Adam M., Harder K W., Clark-Lewis I., and Jirik F (1994) Characterization of protein tyrosme phosphatase SH-PTP2. Study of phosphopeptide substrates and possible regulatory role of SH2 domains. J Biol Chem 25, 5602–5611.Google Scholar
  79. 79.
    Sugimoto S, Lechleider R. J, Shoelson S. E., Neel B G., and Walsh C. T (1994) Expression, purtfication and characterization of SH2-containing protein tyrosine phosphatase, SH-PTP2. J. Biol Chem 268, 22,77l–22,776.Google Scholar
  80. 80.
    Lechletder R. J., Sugtinoto S, Bennett A. M., Kashtshran A. S, Cooper J A., Shoelson S. E, Walsh C T., and Neel B. G (1993) Activatron of the SH2-containing phosphotyrosme phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the PDGFreceptor. J Biol Chem 268, 21,478–21,481.Google Scholar
  81. 81.
    Krauhs P. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24, 946–950CrossRefGoogle Scholar
  82. 82.
    Noble M. E. M., Musacchto A., Saraste M., Courtneidge S. A, and Wierenga R. K (1993) Crystal structure of the SH3 domain in human Fyn; compartson of the three-dimensronal structures of SH3 domains in tyrosine kinases and spectrum EMBO J 12, 2617–2624.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Chi-Hon Lee
    • 1
  • David Cowburn
    • 1
  • John Kuriyan
    • 2
  1. 1.Laboratories of Molecular BiophysicsThe Rockefeller UniversityNew York
  2. 2.Laboratories of Molecular BiophysicsHoward Hughes Medical Institute, The Rockefeller UniversityNew York

Personalised recommendations