Skip to main content

Membrane Targeting via Protein Prenylation

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 88))

Abstract

Posttranslational prenylation of proteins in mammalian cells involves the formation of a thioether linkage between a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety and one or more cysteine residues, at or near the carboxyl terminus of the polypeptide. The prenyl groups are donated by farnesyl pyrophosphate or geranylgeranyl pyrophosphate, which, in turn, are derived from a common precursor, mevalonate (1,2). Prenylation ranks among the most common lipid modifications of proteins in mammalian cells, with one estimate suggesting that 2% (by mass) of all cellular proteins may be modified in this way (3). A few of the known farnesylated or geranylgeranylated proteins include nuclear lamin B (4), H-, and K-Ras proteins (5,6), the γ-subunits of heterotrimeric G proteins (7,8), and Ras-related GTP-binding proteins belonging to the Rac (9), Rap (2,10), Ral (9), Rho (11,12), and Rab (1315) families. The characterization of several protein:prenyltransferases (1619) has led to rapid advances in knowledge concerning the enzymology of protein prenylation. However, much remains to be learned about the significance of the prenyl modification for the function of individual proteins in living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1990) Prenyl proteins ineukaryotic cells: a new type of membrane anchor. Trends Biochem. Sci. 15, 139–142.

    Article  PubMed  CAS  Google Scholar 

  2. Buss, J. E., Quilliam, L. A., Kato, K., Casey, P.J., S., P.A., Wong, G., Clark, R., McCormick, F., Bokoch, G. M., and Der, C. J. (1991) The COOH-terminal domain of the rap1A(Krev-1) protein is isoprenylated and supports transformation by an Hras:rap1A chimeric protein. Mol. Cell Biol. 11, 1523–1530.

    PubMed  CAS  Google Scholar 

  3. Epstein, W. W., Lever, D., Leining, L. M., Bruenger, E., and Rilling, H. C. (1991) Quantitation of prenylcysteines by a selective cleavage reaction. Proc. Natl. Acad. Sci. USA 88, 9668–9670.

    Article  PubMed  CAS  Google Scholar 

  4. Farnsworth, C. C., Wolda, S. L., Gelb, M. H., and Glomset, J. A. (1989) Human lamin B contains a farnesylated cysteine residue. J. Biol. Chem. 64, 20,422–20,429.

    Google Scholar 

  5. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  6. Casey, P., Solski, P. A., Der, C. J., and Buss, J. E. (1989) p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA 86, 8323–8327.

    Article  PubMed  CAS  Google Scholar 

  7. Yamane, H. K., Farnsworth, C. C., Xie, H., Howald, W., Fung, B. K. K., Clarke, S., Gelb, M. H., and Glomset, J. A. (1990) Brain G-protein (gamma) subunits contain an all-trans-geranylgeranyl-cysteine methylester at their carboxyl termini. Proc. Natl. Acad. Sci. USA 87, 5868–5872.

    Article  PubMed  CAS  Google Scholar 

  8. Mumby, S. M., Casey, P. J., Gilman, A. G., Gutawoski, S., and Sternweis, P. C. (1990) G-protein (gamma) subunits contain a twenty-carbon isoprenoid. Proc. Natl. Acad. Sci. USA 87, 5873–5877.

    Article  PubMed  CAS  Google Scholar 

  9. Kinsella, B. T., Erdman, R. A., and Maltese, W. A. (1991) Carboxyl-terminalisoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA. J. Biol. Chem. 266, 9786–9794.

    PubMed  CAS  Google Scholar 

  10. Kawata, M., Farnsworth, C. C., Yoshida, Y., Gelb, M. H., Glomset, J. A., and Takai, Y. (1990) Posttranslationally processed structure of the human platelet protein smg p21B: evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine. Proc. Natl. Acad. Sci. USA 87, 8960–8964.

    Article  PubMed  CAS  Google Scholar 

  11. Hori, Y., Kikuchi, A., Isomura, M., Katayama, M., Miura, Y., Fujioka, H., Kaibuchi, K., and Takai, Y. (1991) Posttranslational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6, 515–522.

    PubMed  CAS  Google Scholar 

  12. Adamson, P., Marshall, C. J., Hall, A., and Tilbrook, P. A. (1992) Post-translational modifications of p21rho proteins. J. Biol. Chem. 267, 20,033–20,038.

    PubMed  CAS  Google Scholar 

  13. Kinsella, B. T. and Maltese, W. A. (1991) rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxyl-terminal motif. J. Biol. Chem. 266, 8540–8544.

    PubMed  CAS  Google Scholar 

  14. Khosravi-Far, R., Lutz, R. J., Cox, A. D., Conroy, L., Bourne, J. R., Sinensky, M., Balch, W. E., Buss, J. E., and Der, C. J. (1991) Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc. Natl. Acad. Sci. USA 88, 6264–6268.

    Article  PubMed  CAS  Google Scholar 

  15. Kinsella, B. T. and Maltese, W. A. (1992) rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J. Biol. Chem. 267, 3940–3945.

    PubMed  CAS  Google Scholar 

  16. Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J., and Brown, M. S. (1990) Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetra-peptides. Cell 62, 81–88.

    Article  PubMed  CAS  Google Scholar 

  17. Moomaw, J. F. and Casey, P. J. (1992) Mammalian protein geranylgeranyl-transferase. J. Biol. Chem. 267, 17,438–17,443.

    PubMed  CAS  Google Scholar 

  18. Armstrong, S. A., Seabra, M. C., Sudhof, T. C., Goldstein, J. L., and Brown, M. S. (1993) cDNA cloning and expression of the alpha and beta subunits of rat Rab geranylgeranyl transferase. J. Biol. Chem. 268, 12,221–12,229.

    PubMed  CAS  Google Scholar 

  19. Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P. M., and Goldstein, J. L. (1993) cDNA cloning of component A of rab geranylgeranyl transferase and demonstration of its role as a rab escort protein. Cell 73, 1091–1099.

    Article  PubMed  CAS  Google Scholar 

  20. Silvius, J. R. and l’Heureux, F. (1994) Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022.

    Article  PubMed  CAS  Google Scholar 

  21. Marshall, C. J. (1993) Protein prenylation: A mediator of protein-protein interactions. Science 259, 1865–1866.

    Article  PubMed  CAS  Google Scholar 

  22. Maltese, W. A. and Sheridan, K. M. (1987) Isoprenylated proteins in cultured cells: subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. J. Cell Physiol. 133, 471–481.

    Article  PubMed  CAS  Google Scholar 

  23. Maltese, W. A., Sheridan, K. M., Repko, E. M., and Erdman, R. A. (1990) Posttranslational modification of low molecular mass GTP-binding proteins by isoprenoid. J. Biol. Chem. 265, 2148–2155.

    PubMed  CAS  Google Scholar 

  24. Simons, K. and Zerial, M. (1993) Rab proteins and the road maps for intracellular transport. Neuron 11, 789–799.

    Article  PubMed  CAS  Google Scholar 

  25. Tisdale, E. J., Bourne, J. R., Khosravi-Far, R., Der, C. J., and Balch, W. E. (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119, 749–761.

    Article  PubMed  CAS  Google Scholar 

  26. Dugan, J. M., de Wit, C., McConlogue, L., and Maltese, W. A. (1995) The ras-related GTP binding protein, Rab1B, regulates early steps in exocytic transport and processing of β-amyloid precursor protein. J. Biol. Chem. 270, 10,982–10,989.

    Article  PubMed  CAS  Google Scholar 

  27. Plutner, H., Cox, A. D., Pind, S., Khosravi-Far, R., Bourne, J., Schwaninger, R., Der, C. J., and Balch, W. E. (1991) Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J. Cell Biol. 115, 31–43.

    Article  PubMed  CAS  Google Scholar 

  28. Pfeffer, S. R. (1994) Rab GTPases: master regulators of membrane trafficking. Curr. Opin. Cell Biol. 6, 522–526.

    Article  PubMed  CAS  Google Scholar 

  29. Ferro-Novick, S. and Novick, P. (1993) The role of GTP-binding proteins in transport along the exocytic pathway. Annu. Rev. Cell Biol. 9, 575–599.

    Article  PubMed  CAS  Google Scholar 

  30. Nuoffer, C. and Balch, W. E. (1994) GTPases: Multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63, 949–990.

    Article  PubMed  CAS  Google Scholar 

  31. Overmeyer, J. H. and Maltese, W. A. (1992) Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein. J. Biol. Chem. 267, 22,686–22,692.

    PubMed  CAS  Google Scholar 

  32. Peter, M., Chavrier, P., Nigg, E. A., and Zerial, M. (1992) Isoprenylation of rab proteins on structurally distinct cysteine motifs. J. Cell Sci. 102, 857–865.

    PubMed  CAS  Google Scholar 

  33. Musha, T., Kawata, M., and Takai, Y. (1992) The geranylgeranyl moiety but not the methyl moiety of the smg25A/rab3A protein is essential for the interactions with membrane and its inhibitory GDP/GTP exchange protein. J. Biol. Chem. 267, 9821–9825.

    PubMed  CAS  Google Scholar 

  34. Soldati, T., Riederer, M. A., and Pfeffer, S. R. (1993) Rab GDI: A solubilizing and recycling factor for rab9 protein. Mol. Biol. Cell 4, 425–434.

    PubMed  CAS  Google Scholar 

  35. Wilson, A. L. and Maltese, W. A. (1993) Isoprenylation of rab1B is impaired by mutations in its effector domain. J. Biol. Chem. 268, 14,561–14,564.

    PubMed  CAS  Google Scholar 

  36. Vielh, E., Touchot, N., Zahraoui, A., and Tavitian, A. (1989) Nucleotide sequence of a rat cDNA: Rab1B, encoding a Rab1-YPT related protein. Nucleic Acids Res. 17, 1770.

    Article  PubMed  CAS  Google Scholar 

  37. Voytas, D. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 2.5.1–2.5.9.

    Google Scholar 

  38. Selden, R. F. and Chory, J. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 2.6.1–2.6.8.

    Google Scholar 

  39. Andersson, S., Davis, D. L., Dahlback, H., Jornvall, H., and Russell, D. W. (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264, 8222–8229.

    PubMed  CAS  Google Scholar 

  40. Bloch, K. D. and Bartos, B. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 3.1.1–3.1.9.

    Google Scholar 

  41. Struhl, K. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 3.16.1–3.16.11.

    Google Scholar 

  42. Seidman, C. E., Struhl, K., and Sheen, J. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 1.8.1–1.8.8.

    Google Scholar 

  43. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monoghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980) Mevinolin: a highly potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 77, 3957–3961.

    Article  PubMed  CAS  Google Scholar 

  44. Evan, G. I., Lewis, G. K., Ramsay, G., and Bishop, J. M. (1985) Isolation of monoclonal antibodies specific for the human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616.

    PubMed  CAS  Google Scholar 

  45. Delidow, B. C., Lynch, J. P., Peluso, J. J., and White, B. A. (1993) in PCR Protocols: Current Methods and Applications (White, B. A., ed.), Humana, Totowa, NJ pp. 1–29.

    Chapter  Google Scholar 

  46. Chen, Y. T., Holcomb, C., and Moor, H. P. H. (1993) Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc. Natl. Acad. Sci. USA 90, 6508–6512.

    Article  PubMed  CAS  Google Scholar 

  47. Beranger, F., Cadwallader, K., Profiri, E., Powers, S., Evans, T., de Gunzberg, J., and Hancock, J. F. (1994) Determination of structural requirements for the interaction of Rab6 with RabGDI and Rab geranylgeranyltransferase. J. Biol. Chem. 269, 13,637–13,643.

    PubMed  CAS  Google Scholar 

  48. Brondyk, W. H., McKiernan, C. J., Burstein, E. S., and Macara, I. G. (1993) Mutants of rab3A analogous to oncogenic ras mutants. J. Biol. Chem. 268, 9410–9415.

    PubMed  CAS  Google Scholar 

  49. Adamson, P., Paterson, H. F., and Hall, A. (1992) Intracellular localization of P21rho proteins. J. Cell Biol. 119, 617–627.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson, K. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kinston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 2.4.1–2.4.5.

    Google Scholar 

  51. Sanger, F., Niklen, S., and Coulson, A. R. (1977) DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  52. Slatko, B. E., Albright, L. M., and Tabor, S. (1989) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Greene Publishing Associates and Wiley-Interscience, New York, pp. 7.4.1–7.4.27.

    Google Scholar 

  53. Gorman, C. M., Gies, D. R., and McCray, G. (1990) Transient production of proteins using an adenovirus transformed cell line. DNA Protein Eng. Techniques 2, 3–10.

    Google Scholar 

  54. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  55. Towbin, H., Staehlin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Overmeyer, J.H., Erdman, R.A., Maltese, W.A. (1998). Membrane Targeting via Protein Prenylation. In: Clegg, R.A. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 88. Humana Press. https://doi.org/10.1385/0-89603-487-9:249

Download citation

  • DOI: https://doi.org/10.1385/0-89603-487-9:249

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-487-7

  • Online ISBN: 978-1-59259-572-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics