Skip to main content

Use of Synthetic Peptides in the Dissection of Protein-Targeting Interactions

  • Protocol
Protein Targeting Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 88))

  • 884 Accesses

Abstract

Phosphorylation of protein substrates by kinases and phosphatases is a major process in the control of cellular function (1). The mechanisms involved in the regulation of kinase and phosphatase activity have been the subject of intense investigation since glycogen phosphorylase was first recognized to be regulated by phosphorylation (2,3). The use of synthetic peptides has featured extensively in structure and function studies, establishing regions that are important for the control of substrate phosphorylation. The regulation of kinases and phosphatases is achieved at many levels. One level of regulation involves the subcellular localization of kinases and phosphatases through interactions with targeting proteins. This chapter will focus on the use of synthetic peptides in the identification of functional domains on targeting proteins, the characterization of bioactive peptides in vitro, and the use of peptides to disrupt enzyme localization in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krebs, E. G. and Beavo, J. A. (1979) Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 43, 923–959.

    Article  Google Scholar 

  2. Fischer, E. H. and Krebs, E. G. (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J. Biol. Chem. 216, 121–132.

    PubMed  CAS  Google Scholar 

  3. Krebs, E. G., Graves, D. J., and Fischer, E. H. (1959) Factors affecting the activity of muscle phosphorylase b kinase. J. Biol. Chem. 234, 2867–2873.

    PubMed  CAS  Google Scholar 

  4. Kemp, B. E., Parker, M. W., Hu, S., Tiganis, T., and House, C. (1994) Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. TIBS 19, 440–444.

    PubMed  CAS  Google Scholar 

  5. Kemp, B. E., Graves, D. J., Benjamini, E., and Krebs, E. G. (1977) Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J. Biol. Chem. 252, 4888–4894.

    PubMed  CAS  Google Scholar 

  6. Corbin, J. D. and Reimann, E. M. (1974) A filter assay for determining protein kinase activity. Methods Enzymol. 38, 287–294.

    Article  PubMed  CAS  Google Scholar 

  7. Corbin, J. D., Sugden, P. H., West, L., Flockhart, D. A., Lincoln, T. M., and McCarthy, D. (1978) Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 253, 3997–4003.

    PubMed  CAS  Google Scholar 

  8. Scott, J. D., Fischer, E. H., Takio, K., DeMaille, J. B., and Krebs, E. G. (1985) Amino acid sequence of the heat-stable inhibitor of the cAMP-dependent protein kinase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 82, 5732–5736.

    Article  PubMed  CAS  Google Scholar 

  9. Scott, J. D., Glaccum, M. B., Fischer, E. H., and Krebs, E. G. (1986) Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 83, 1613–1616.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J. Biol. Chem. 261, 989–992.

    PubMed  CAS  Google Scholar 

  11. Glass, D. B., Cheng, H.-C., Kemp, B. E., and Walsh, D. A. (1986) Differential and common recognition sites of the catalytic sites of the cGMP-dependent and cAMP-dependent protein kinases by the inhibitory peptides derived from the heat-stable inhibitor protein. J. Biol. Chem. 261, 12,161–12,171.

    Google Scholar 

  12. House, C. and Kemp, B. E. (1987) Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238, 1726–1728.

    Article  PubMed  CAS  Google Scholar 

  13. Eichholtz, T., de Bont, D. B., de Widt, J., Liskamp, R. M., and Ploegh, H. L. (1993) A myristoylated pseudosubstrate peptide, a novel protein kinase C inhibitor. J. Biol. Chem. 268, 1982–1986.

    PubMed  CAS  Google Scholar 

  14. Hubbard, M. and Cohen, P. (1993) On target with a mechanism for the regulation of protein phosphorylation. TIBS 18, 172–177.

    PubMed  CAS  Google Scholar 

  15. Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S., and Scott, J. D. (1996) Coordination of three signaling enzymes by AKAP79 a mammalian scaffold protein. Science 271, 1589–1592.

    Article  PubMed  CAS  Google Scholar 

  16. Carr, D. W., Stofko-Hahn, R. E., Fraser, I. D. C., Bishop, S. M., Acott, T. S., Brennan, R. G., and Scott, J. D. (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J. Biol. Chem. 266, 14,188–14,192.

    PubMed  CAS  Google Scholar 

  17. Carr, D. W. and Scott, J. D. (1992) Blotting and band-shifting: techniques for studying protein-protein interactions. TIBS 17, 246–249.

    PubMed  CAS  Google Scholar 

  18. Carr, D. W., Hausken, Z. E., I. Fraser, D. C., Stofko-Hahn, R. E., and Scott, J. D. (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein cloning and characterization of the RII-binding domain. J. Biol. Chem. 267, 13,376–13,382.

    PubMed  CAS  Google Scholar 

  19. Greengard, P., Jen, J., Nairn, A. C., and Stevens, C. F. (1991) Enhancement of glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science 253, 1135–1138.

    Article  PubMed  CAS  Google Scholar 

  20. Rosenmund, C., Carr, D. W., Bergeson, S. E., Nilaver, G., Scott, J. D., and Westbrook, G. L. (1994) Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368, 853–856.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, B. D., Scheuer, T., and Catterall, W. A. (1994) Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91, 11,492–11,496.

    Article  PubMed  CAS  Google Scholar 

  22. Scott, J. D. and McCartney, S. (1994) Localization of A-kinase through anchoring proteins. Mol. Endocrinol. 8, 5–13.

    Article  PubMed  CAS  Google Scholar 

  23. Coghlan, V., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., Gallatin, W. M., and Scott, J. D. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111.

    Article  PubMed  CAS  Google Scholar 

  24. Wolf, M. and Sahyoun, N. (1986) Protein kinase C and phosphatidylserine bind to Mr110,000/115,000 polypeptides enriched in cytoskeletal and postsynaptic density preparations. J. Biol. Chem. 261, 13,327–13,332.

    PubMed  CAS  Google Scholar 

  25. McNeill, R. B. and Colbran, R. J. (1995) Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins: char acterization of binding to a 190 kDa postsynaptic density protein. J. Biol. Chem. 270, 10,043–10,050.

    Article  PubMed  CAS  Google Scholar 

  26. Newton, A. C. (1995) Protein kinase C: structure, function and regulation. J. Biol. Chem. 270, 28,495–28,498.

    Article  PubMed  CAS  Google Scholar 

  27. Carr, D. W., Stofko-Hahn, R. E., Fraser, I. D. C., Cone, R. D., and Scott, J. D. (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. J. Biol. Chem. 24, 16,816–16,823.

    Google Scholar 

  28. Coghlan, V. M., Hausken, Z. E., and Scott, J. D. (1995) Subcellular targeting of kinases and phosphatases by association with bifunctional anchoring proteins. Biochem. Soc. Trans. 23, 592–596.

    PubMed  CAS  Google Scholar 

  29. Glass, D. B., El-Maghrabi, M. R., and Pilkis, S. J. (1986) Synthetic peptides corresponding to the site phosphorylated in 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase as substrates of cyclic nucleotide-dependent protein kinases. J. Biol. Chem. 261, 2987–2993.

    PubMed  CAS  Google Scholar 

  30. Gupta, K. P., Ward, N. E., Gravitt, K. R., Bergman, P. J., and O’Brian, C. A. (1996) Partial reversal of multidrug resistance in human breast cancer cells by an N-myristoylated protein kinase C-a pseudosubstrate peptide. J. Biol. Chem. 271, 2102–2111.

    Article  PubMed  CAS  Google Scholar 

  31. Maskowske, M. and Rosen, D. M. (1989) Complete activation of protein kinase C by an antipeptide antibody directed against the pseudosubstrate peptide. J. Biol. Chem. 264, 16,155–16,159.

    Google Scholar 

  32. Faux, M. C. and Scott, J. D. (1996) Molecular glue: kinase anchoring and scaffold proteins. Cell 85, 9–12.

    Article  PubMed  CAS  Google Scholar 

  33. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  34. Pearson, R. B., Mitchelhill, K. I., and Kemp, B. E. (1993) Studies of protein kinase/phosphatase specificity using synthetic peptides, in Protein Phosphorylation: A Practical Approach (Hardie, D. G., ed.), IRL, New York, pp. 265–291.

    Google Scholar 

  35. Kemp, B. E. and Pearson, R. B. (1991) Design and use of peptide substrates for protein kinases. Methods Enzymol. 200, 121–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Scott, J.D., Faux, M.C. (1998). Use of Synthetic Peptides in the Dissection of Protein-Targeting Interactions. In: Clegg, R.A. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 88. Humana Press. https://doi.org/10.1385/0-89603-487-9:161

Download citation

  • DOI: https://doi.org/10.1385/0-89603-487-9:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-487-7

  • Online ISBN: 978-1-59259-572-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics