Skip to main content

Molecular Genetic Approaches I

Two-Hybrid Systems

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 88))

Abstract

The two-hybrid system is a powerful yeast-based genetic system for isolating cDNAs encoding proteins that interact with a protein of interest. First proposed by Fields and colleagues (1), the two-hybrid system has enabled investigators to isolate and characterize numerous protein-protein interactions, and to isolate novel interacting partners for many biologically important enzyme complexes, signaling proteins, and transcription factors. In some cases, the two-hybrid system has demonstrated interactions between proteins that were either too transient, or too unstable, to be detected by traditional biochemical analysis. However, the two-hybrid system can also generate numerous false-positive interactions that often complicate the analysis of results obtained with this method. This chapter will first describe the theoretical basis for the two-hybrid system, and provide a primer for understanding the yeast genetics needed for a full understanding of the method. It will then provide several detailed protocols for performing a two-hybrid screen. It will describe a battery of genetic tests required for confirming positives isolated by the method.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245,246.

    Article  PubMed  CAS  Google Scholar 

  2. Keegan, L., Gill, G., and Ptashne, M. (1986) Separation of DNA-binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231, 699–704.

    Article  PubMed  CAS  Google Scholar 

  3. Hope, I. A. and Struhl, K. (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894.

    Article  PubMed  CAS  Google Scholar 

  4. Ma, J. and Ptashne, M. (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853.

    Article  PubMed  CAS  Google Scholar 

  5. Ma, J. and Ptashne, M. (1987) A new class of yeast transcriptional activators. Cell 51, 113–119.

    Article  PubMed  CAS  Google Scholar 

  6. Ma, J. and Ptashne, M. (1988) Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55, 443–446.

    Article  PubMed  CAS  Google Scholar 

  7. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    Article  PubMed  CAS  Google Scholar 

  8. Fields, S. and Sternglanz, R. (1994) The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10, 286–292.

    Article  PubMed  CAS  Google Scholar 

  9. Laughon, A. and Gesteland, R. F. (1984) Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol. Cell. Biol. 4, 260–267.

    PubMed  CAS  Google Scholar 

  10. Rose, M. D., Winston, F., and Heiter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  11. Vojtek, A. B., Hollenberg, S. M., and Cooper, J. (1993) A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214.

    Article  PubMed  CAS  Google Scholar 

  12. Durfee, T., Becherer, K., Chen, P. L., Yeh, S. H., Yang, Y., Kilburn, A. E., et al. (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569.

    Article  PubMed  CAS  Google Scholar 

  13. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816.

    Article  PubMed  CAS  Google Scholar 

  14. Hannon, G. J., Demetrick, D., and Beach, D. (1993) Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 7, 2378–2391.

    Article  PubMed  CAS  Google Scholar 

  15. Feilotter, H. E., Hannon, G. J., Ruddell, C. J., and Beach, D. (1994) Construction of an improved host strain for two hybrid screening. Nucleic Acids Res. 22, 1502–1503.

    Article  PubMed  CAS  Google Scholar 

  16. Hannon, G. J., Casso, D., and Beach, D. (1994) KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 1731–1735.

    Article  PubMed  CAS  Google Scholar 

  17. Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.

    Article  PubMed  CAS  Google Scholar 

  18. Zervos, A. S., Gyuris, J., and Brent, R. (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72, 223–232.

    Article  PubMed  CAS  Google Scholar 

  19. Le Douarin, B., Pierrat, B., vom Baur, E., Chambon, P., and Losson R. (1995) A new version of the two-hybrid assay for detection of protein-protein interactions. Nucleic Acids Res. 23, 876–878.

    Article  PubMed  CAS  Google Scholar 

  20. Kishore, G. M. and Shah, D. M. (1988) Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57, 627–663.

    Article  PubMed  CAS  Google Scholar 

  21. Chevray, P. M. and Nathans, D. (1992) Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA 89, 5789–5793.

    Article  PubMed  CAS  Google Scholar 

  22. Ruden, D. M., Ma, J., Li, Y., Wood, K., and Ptashne, M. (1991) Generating yeast transcriptional activators containing no yeast protein sequences. Nature 350, 250–252.

    Article  PubMed  CAS  Google Scholar 

  23. Munder, T. and Furst, P. (1992) The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Mol. Cell. Biol. 12, 2091–2099.

    PubMed  CAS  Google Scholar 

  24. Silver, P. A., Keegan, L. P., and Ptashne, M. (1984) Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc. Natl. Acad. Sci. USA 81, 5951–5955.

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  26. Hill, J., Donald, K. A., and Griffiths, D. E. (1991) DMSO-enhanced whole cell yeast transformation [published erratum appears in Nucleic Acids Res. 1991 Dec 11; 19, 6688. Nucleic Acids Res. 19, 5791.

    Article  PubMed  CAS  Google Scholar 

  27. Gietz, R. D. and Schiestl, R. H. (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7, 253–263.

    Article  PubMed  CAS  Google Scholar 

  28. Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Article  PubMed  CAS  Google Scholar 

  29. Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.

    Article  PubMed  CAS  Google Scholar 

  30. Breeden, L. and Nasmyth, K. (1985) Regulation of the yeast HO gene. Cold Spring Harbor Symposium on Quantitative Biology 50, 643–650.

    CAS  Google Scholar 

  31. Yocum, R. R., Hanley, S., West, R., and Ptashne, M. (1984) Use of LacZ fusions to delimit regulatory domains of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1985–1998.

    PubMed  CAS  Google Scholar 

  32. Guarente, L. (1983) Yeast promoters and LacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181–191.

    Article  PubMed  CAS  Google Scholar 

  33. Gekakis, N., Saez, L., Delahaye-Brown, A.-M., Myers, M. P., Sehgal, A., Young, M. W., et al. (1995) Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PER-L. Science 270, 811–815.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman, C. S. and Winston, F. (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.

    Article  PubMed  CAS  Google Scholar 

  35. Ward, A. C. (1990) Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic Acids Res. 18, 5319.

    Article  PubMed  CAS  Google Scholar 

  36. Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  37. Maina, C. V., Riggs, P. D., Grandea, A. G., Slatko, E. E., Moran, L. S., Tagliamonte, J. A., et al. (1988) An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74, 365–373.

    Article  PubMed  CAS  Google Scholar 

  38. Field, J., Nikawa, J.-I., Broek, D., MacDonald, B., Rodgers, L., Wilson, I. A., et al. (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8, 2159–2165.

    PubMed  CAS  Google Scholar 

  39. Li, J. J. and Herskowitz, I. (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, M. M. and Reed, R. R. (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126.

    Article  PubMed  CAS  Google Scholar 

  41. Wu, Y., Liu, Y., Lee, L., Miner, Z., and Kulesz Martin, M. (1994) Wild-type alternatively spliced p53: binding to DNA and interaction with the major p53 protein in vitro and in cells. EMBO J. 13, 4823–4830.

    PubMed  CAS  Google Scholar 

  42. Manivasakam, P. and Schiestl, R. H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation [published erratum appears in Nucleic Acids Res. 1993 Oct 11; 21, 4856]. Nucleic Acids Res. 21, 4414–4415.

    Article  PubMed  CAS  Google Scholar 

  43. Bendixen, C., Gangloff, S., and Rothstein, R. (1994) A yeast mating-selection scheme for detection of protein-protein interactions. Nucleic Acids Res. 22, 1778–1779.

    Article  PubMed  CAS  Google Scholar 

  44. Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L., and Rothstein, R. (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398.

    PubMed  CAS  Google Scholar 

  45. van Aelst, L., Barr, M., Marcus, S., Polverino, A., and Wigler, M. (1993) Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90, 6213–6217.

    Article  PubMed  CAS  Google Scholar 

  46. Cohen, G. B., Ren, R., and Baltimore, D. (1995) Modular binding domains in signal transduction proteins. Cell 80, 237–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Bolger, G.B. (1998). Molecular Genetic Approaches I. In: Clegg, R.A. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 88. Humana Press. https://doi.org/10.1385/0-89603-487-9:101

Download citation

  • DOI: https://doi.org/10.1385/0-89603-487-9:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-487-7

  • Online ISBN: 978-1-59259-572-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics