Skip to main content

Purification of Recombinant Proteins Having High Isoelectric Points

  • Protocol
Molecular Diagnosis of Infectious Diseases

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 13))

  • 4877 Accesses

Abstract

The use of recombinant antigens and chemically synthesized peptides are the new approaches for the construction of reliable and sensrtive diagnostic assays. Moreover, in the field of virology, the use of recombinant antigens eliminates the need to handle highly hazardous material in the preparation of the assays (1,2) and allows the assembly of multiepitope polypeptides (3). The protein purification is a critical step in the preparation of recombinant antigens. It is important to point out that the biochemical characteristics of a recombinant protein, expressed in a heterologous system, are unique. Purification problems may be very different for related structural proteins expressed in the same host or for the same protein expressed in different hosts. The designing of an antigen purification procedure is strongly dependent on the immunodominant epitopes present on its surface. The antibodies recognize chemical groupings, exposed to the solvent, on the surface of an antigen An immunodominant determinant may be continuous or discontniuous. Moreover, continuous epitopes can be sequential, if they are only defined by the primary protein sequence, or conformational, if they are associated to secondary structure elements (α-helix, β-sheet, loops). Discontinuous epitopes are, instead, defined by the tertiary structure of the protein. Furthermore, the expression system (bacteria, yeast, insect cells, mammalian cells), the expression condition used (4), the sensitivity of the recombmant antigen to host proteases (5), and the number of steps involved in the purification procedure may have relevant effects on the yield and on the purity of the recombinant antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kos A, Molijn A, Blauw B., and Schellekens H. (1991) Baculovnus-directed high level expression of the hepatitis delta antigen in Spodoptera frugiperda cells. J. Gen Virol. 72, 833–842.

    Article  PubMed  CAS  Google Scholar 

  2. Calogero R, Barblen U., Borla M, Osborne S., Poisson F, and Bonelh F. (1993) Purification of recombinant hepatitis delta antigen expressed in E coli cells FEBS Lett 318, 322–324.

    Article  PubMed  CAS  Google Scholar 

  3. Osborne S., Cecconato E., Grrva S., Garetto F., Calogero R., and Bonelli F (1993) Expression in E coli and purification of a chimeric p22-NS3 recombinant antigen of Hepatitis C virus (HCV). FEBS Lett 324, 253–257

    Article  PubMed  CAS  Google Scholar 

  4. Schein C H. and Noteborn M H M (1988) Formation of soluble recombinant proteins in Escherlchia coli is favored by lower growth temperature Bio/Technology 6, 291–294

    Article  CAS  Google Scholar 

  5. Babbitt P. C, West B. L., Buechter D. D., Kuntz I. D., and Kenyon G. L (1990) Removal of a proteolytic activity associated with aggregates formed from expression of creatme kmase in E coli leads to improved recovery of active enzyme Bio/Technology 8, 945–949.

    Article  PubMed  CAS  Google Scholar 

  6. Cleland J. L, Builder S E, Swartz J R., Winkler M, Chang J Y, and Wang D I (1992) Polyethylene glycol enhanced protem refolding. Bio/Technology 10, 1013–1019

    Article  PubMed  CAS  Google Scholar 

  7. Calogero R, Cecconato E, Manam M, Suppo M, Barbten U, Bonelh F, Mtlanesi G., and Gallina A (1989) Expression of HIV-1 gag gene in E co1i as a diagnostic test, in Advances in Applied Biotechnology Series, vol 7 (Papas T S, ed.), Gulf Publishing, Houston, TX, pp 327–336.

    Google Scholar 

  8. Georgiou G. and Bowden G. A (1991) Inclusion body formation and the recovery of aggregated recombinant proteins, in Recombinant DNA Technology and Application (Ho C, Prokop A, and Bajpai R., eds), McGraw-Hill, New York, pp 333–351

    Google Scholar 

  9. Hartley D and Kane J F. (1988) Properties of inclusion bodies from recombinant E coli Biochem Soc Trans 16, 101,102.

    Google Scholar 

  10. Cregg J. M, Tschopp J. F, Stillman C, Siegel R, Akong M, Craig W S, Buckholz R G, Madden K R., Kellaris P A, Davis G R, Smiley B L, Cruze J, Torregrossa R, Velicelebt G, and Thill G P (1987) High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Bio/Technology 5, 479–485

    Article  CAS  Google Scholar 

  11. Fraser M. J. (1992) The baculovirus-infected insect cell as eukariotic gene expression system, in Current Topxs in Microbiology and Immunology (Muzyczka N, ed), Springer-Verlag, Berlin, pp. 131–172

    Google Scholar 

  12. Mitraki A. and King J (1989) Protein folding intermediates and inclusion body formation. Bio/Technology 7, 690–697

    Article  CAS  Google Scholar 

  13. Bowden G A, Paredes A M, and Georgtou G. (1991) Structure and morphology of protein inclusion bodies in Escherichia coli Bio/Technology 9, 725–730

    Article  PubMed  CAS  Google Scholar 

  14. Haase-Pettingell C A and King J. (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation J Biol. Chem 263, 4977–4983

    PubMed  CAS  Google Scholar 

  15. Frankel S., Sohn R, and Leinwand L (1991) The use of sarkosyl in generating soluble protem after bacterial expression Proc Natl Acad Sci USA 88, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  16. Soutschek E., Hoflacher B., and Motz M. (1990) Purification of a recombinantly produced transmembrane protein (gp41) of HIV-1. J Chromat 521, 267–277.

    Article  CAS  Google Scholar 

  17. Arakawa T. and Timasheff S. N. (1985) Theory of protein solubihty Methods Enzymol 114, 49–77.

    Article  PubMed  CAS  Google Scholar 

  18. Laemmh U. K (1970) Cleavage of structural proteins during the assembly of the head of bactertophage T4 Nature 227, 680–685

    Article  Google Scholar 

  19. Towbin H, Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to introcellulose sheets. procedure and some apphcations Proc NatL Acad Sci USA 76, 4350–4354

    Article  PubMed  CAS  Google Scholar 

  20. Talbot P V, Knobler R. L., and Buchmeler M. (1984) Western blot analysts of viral antigens and antibodies application to murine hepatitis virus. J Immunol Meth 73, 177–188

    Article  CAS  Google Scholar 

  21. Catt KJKX, Ntall H D, and Tregear G W. (1967) Solid phase radioimmunoassay. Nature 213, 825–827

    Article  PubMed  CAS  Google Scholar 

  22. Catt K and Tregear G W. (1967) Solid-phase radioimmunoassay in antibodycoated tubes Science 158, 1570–1573

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Calogero, R.A., Aulicino, A. (1998). Purification of Recombinant Proteins Having High Isoelectric Points. In: Reischl, U. (eds) Molecular Diagnosis of Infectious Diseases. Methods in Molecular Medicine™, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-485-2:345

Download citation

  • DOI: https://doi.org/10.1385/0-89603-485-2:345

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-485-3

  • Online ISBN: 978-1-59259-597-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics