Skip to main content

PCR-Based Cloning and Subsequent Expression of Antigenic Proteins in Escherichia coli

  • Protocol
Molecular Diagnosis of Infectious Diseases

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 13))

  • 4854 Accesses

Abstract

The polymerase chain reaction (PCR), originally introduced by Satki et al. (1) and subsequently automated by Mullis and Faloona (2), has emerged as a powerful tool in molecular genetics for the exponential in vitro amplification of specific sequences of Interest from minute quantrties of DNA or RNA Beside the PCR-based diagnosis of human pathogens, this straightforward amplification system has rapidly established itself as a standard technique in the course of cloning procedures. Scharf et al. (3) first showed that it was quite simple to introduce additional foreign sequences into amplification products merely by attaching these sequences to the 5′ end of the oligonucleotides used as PCR primers. Although these 5′ ends of the primers are mismatched to the template DNA, they usually show little effect on the overall efficiency and specifity of the amplification process since primer specifity is imparted most significantly by the 3′ portion of the oligonucleotide (4). As DNA strands mittated by these “5′-mismatched” primers serve themselves as targets during the further rounds of antisense primer elongation, these artificial sequences become fixed into the termini of the growing population of amplification products. Thus principle—the introduction of individual DNA alterations via the PCR primersis of great utility for the de novo creation of terminal restriction enzyme recognition sequences (restriction sites). As shown in Fig. 1, an artificial restriction site can be added to the 5′ end of one or both oligonucleotides used in PCR.

Incorporation of artificial terminal restriction sites in amplification products via 5′-mismatching PCR primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H A, and Arnheim N. (1985) Enzymatic amplification of β-globin sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354

    Article  PubMed  CAS  Google Scholar 

  2. Mullis K. B. and Faloona F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350.

    Article  PubMed  CAS  Google Scholar 

  3. Scharf S J, Horn G T, and Ehrlich H A. (1986) Direct cloning and sequence analysis of enzymatically amplified genomic sequences Science 233,1076–1078.

    Article  PubMed  CAS  Google Scholar 

  4. Scharf S. J (1990) Cloning with PCR, in PCR Protocols A Guide to Methods and Applications (Inins M A., Gelfand D H., Sninsky J. J., and White T J., eds.), Academic New York, pp. 84–91.

    Google Scholar 

  5. Kaufman D. L. and Evans G. A. (1990) Restriction endonuclease cleavage at the termini of PCR products. BioTechniques 9, 304–306.

    PubMed  CAS  Google Scholar 

  6. Restriction endonuclease cleavage of short DNA sequences (1989) NEB Transcript 2, 8,9

    Google Scholar 

  7. Costa G L and Weiner M P (1994) Protocols for cloning and analysts of blunt-ended PCR-generated DNA fragments. PCR Methods Appl 3, S95–S106

    Article  PubMed  CAS  Google Scholar 

  8. Tautz D and Renz M. (1983) An optimized freeze squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 13, 14–19

    Article  Google Scholar 

  9. Hochuli E., Dobeh H, and Schacher A (1987) New metal chelate adsorbent selective for proteins and peptide containing netghboring histidine residues J Chromatogr 411, 177–184.

    Article  PubMed  CAS  Google Scholar 

  10. Ford C F, Suommen I, and Glatz C. E (1991) Fusion tails forthe recovery and purification of recombinant proteins Protein Express Pur 2, 95–107

    Article  CAS  Google Scholar 

  11. Hopp T. P and Woods K. R. (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6, 1204–1210

    Article  CAS  Google Scholar 

  12. Smith D B and Johnson K S (1988) Single-step purification of polypeptides expressed in Escherichia co1i as fusions with glutathione S-transferase Gene 67, 31–40

    Article  PubMed  CAS  Google Scholar 

  13. Smith D (1994) Expression and purification of glutathione S-transferase fusion protems, in Current Protocols in Molecular Biology (Ausubel F M, Brent R, Kingston R E, Moore D D, Smith J A, Seidman J G, and Struhl K, eds), Wiley New York, section 1671

    Google Scholar 

  14. Maina C V, Riggs P D., Grandea A G, Slatko B E., Moran L S, Taghamonte J A, McReynolds L. A., and Guan C D (1988) An Escherichia coli expression vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74, 365–373.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt T G M. and Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Jg Fu-fragment Prot Engineering 6, 109–122

    Article  CAS  Google Scholar 

  16. Guan K.-L. and Dixon J E (1991) Eucaryotic proteins expressed in Escherichia coli an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192, 262–267

    Article  PubMed  CAS  Google Scholar 

  17. Sawadogo M. and van Dyke M W (1991) A rapid method for the purification of deprotected oligodesoxynucleotides. Nucleic Acids Res. 19, 674

    Article  PubMed  CAS  Google Scholar 

  18. GrosJean H and Fiers W. (1982) Preferential codon usage in prokaryotic genes the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18, 199–209

    Article  PubMed  CAS  Google Scholar 

  19. Crowe J S., Cooper H J., Smith M A., Sims M J., Parker D, and Gewert D. (1991) Improved cloning efficiency of polymerase chain reaction (PCR) products after protemase K digestion. Nucleic Acids Res 19, 184.

    Article  PubMed  CAS  Google Scholar 

  20. Jung V., Pestka S B, and Pestka S. (1990) Efficient cloning of PCR generated DNA containing terminal restrtction endonuclease recognition sites. Nucleic Acids Res 18, 6156.

    Article  PubMed  CAS  Google Scholar 

  21. Aslamdis C. and de Jong P J (1990) Ligation-independent cloning of PCR products (LIC-PCR) Nucleic Acids Res 18, 6069,6070

    Google Scholar 

  22. Lorens J. B (1991) Rapid and reliable cloning of PCR products PCR Methods Appl 1, 140,141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Reischl, U. (1998). PCR-Based Cloning and Subsequent Expression of Antigenic Proteins in Escherichia coli . In: Reischl, U. (eds) Molecular Diagnosis of Infectious Diseases. Methods in Molecular Medicine™, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-485-2:157

Download citation

  • DOI: https://doi.org/10.1385/0-89603-485-2:157

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-485-3

  • Online ISBN: 978-1-59259-597-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics