Suppression of the Human Carcinoma Phenotype by an Antioncogene Ribozyme

  • Toshiya Shitara
  • Kevin J. Scanlon
Part of the Methods in Molecular Medicine book series (MIMM, volume 7)

Abstract

A spectrum of oncogenes have been identified and are thought to be associated with the progression of neoplasia. These oncogenes include the following: growth factors/receptors, kinases, nuclear proteins (i.e., Fos/Jun), and tumor suppressor genes. Perturbation of one or more of these genes can transform normal cells into invasive/metastatic cancer cells. Understanding the role of these oncogenes for specific types of cancer may lead to a more rational basis for tissue-specific targets in cancer gene therapy.

Keywords

Permeability Cellulose Agar Codon Agarose 

References

  1. 1.
    Curran, T. and Franza, B. R., Jr. (1988) Fos and Jun: the AP-1 connection. Cell 55, 395–397.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenberg, M. E and Ziff, E. B. (1984) Stimulation of 3T3 cells induces transcription or the c-fos proto-oncogene. Nature 311, 433–438.PubMedCrossRefGoogle Scholar
  3. 3.
    Angel, P., Imagawa, M., Kain, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., Jonat, C., Herrlich, P., and Kain, M. (1987) Phorbol ester-inducible genes contain a common cls element recognized by at TPA-modulated trans-acting factor. Cell 49, 1687–1692.CrossRefGoogle Scholar
  4. 4.
    Hollander, M. C. and Fornace, A. J., Jr. (1989) Induction of fos RNA by DNA-damaging agents. Cancer Res. 49, 1687–1692.PubMedGoogle Scholar
  5. 5.
    Kashani-Sabet, M., Wang, W., and Scanlon, K. J. (1990) Cyclosporin A suppresses cisplatin-induced c-fos gene expression in ovarian carcinoma cells. J Blol. Chem. 265, 11,285–11,288.Google Scholar
  6. 6.
    Ledwith, B. J., Manam, S., Kraynak, A. R, Nichols, W. W., and Bradley, M. O. (1990) Antisense-fos RNA causes partial reversion of the transformed phenotype induced by the c-Ha-ras oncogene. Mol. Cell. Biol 10, 1545–1555.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Curran, T., Beveren, C. V., Ling, N., and Verma, I. M. (1985) Viral and cellular proteins are complexed with a 39,000 Dalton cellular protein. Mol. Cell. Biol. 5, 167–172.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Rauscher, F. J., III, Cohen, D. R, Curran, T, Bos, T J., Vogt, P. K., Bohmann, D., Tjian, R., and Franza, B., Jr (1988) Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240, 1010–1016.PubMedCrossRefGoogle Scholar
  9. 9.
    Vogt, P. K. and Bos, T. J. (1990) jun: oncogene and transcription factor. Adv. Cancer Res 55, 1–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S. (1991) Oncogenes and signal transduction. Cell 64, 281–302.PubMedCrossRefGoogle Scholar
  11. 11.
    Rauscher, F. J., III., Voulalas, P. J., Franza, B. R., Jr., and Curran, T. (1988) Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev. 2, 1687–1699.PubMedCrossRefGoogle Scholar
  12. 12.
    Zmeler, J. L., Schatz, C., Wasylyk, C., Chatton, B., and Wasylyk, B. (1988) A Harvey-ras responsive transcription element is also responsive to a tumor-promoter and to serum. Nature 332, 275–278.CrossRefGoogle Scholar
  13. 13.
    Wasylyk, C., Zmeler, J. L., and Wasylyk, B. (1988) Transforming but not immortalizing oncogenes activate the transcription factor PEA2. EMBOJ. 7, 2475–2483.Google Scholar
  14. 14.
    Mizel, S. B. (1991) Ha-ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Chemtracts-Biochem Mol. Blol. 2, 294–296.Google Scholar
  15. 15.
    Muller, R., Bravo, R., and Burckhardt, J (1984) Induction of c-fos gene and protein by growth factor precedes activation of c-myc. Nature 312, 616–620.CrossRefGoogle Scholar
  16. 16.
    Angel, P., Hattori, K., Smeal, T., and Karin, M. (1988) The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875–885.PubMedCrossRefGoogle Scholar
  17. 17.
    Rahmsdorf, H. J., Schonthal, A., Angel, P., Litfin, M., Ruther, U., and Herrlich, P. (1987) Posttranscriptional regulation of c-fos mRNA expression. Nucleic Acids Res 15, 1643–1659.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Huang, J. S., Huang, S. S., and Deuel, T. F. (1984) Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell 39, 79–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Riabowol, K. T., Vosatka, R. J., Ziff, E. B., Lamb, N. J, and Feramisco, J. F. (1988) Microinjection off fos-specific antibodies blocks DNA syntheses in fibroblastic cells. Mol. Cell Bzol. 8, 1670–1676.Google Scholar
  20. 20.
    Holt, J. T., Gopal, T. V., Moulton, A D., and Nienhuis, A. W. (1986) Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl Acad. Sci. USA 83, 4794–4798.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishikura, K. and Murray, J. M. (1987) Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol. Cell. Biol. 7, 639–649.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Funato, T., Yoshida, E., Jrao, L., Tone, T., Kashani-Sabet, M., and Scanlon, K J (1992) The utility of an anti-fos ribozyme in reversing cisplatin resistance in human carcinoma. Adv Enzyme Reg 32, 195–209.CrossRefGoogle Scholar
  23. 23.
    Scanlon, K. J., Jiao, L., Funato, T., Wang, W., Tone, T., Rossi, J. J., and Kashani-Sabet, M. (1991) Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein. Proc Natl. Acad. Sci. USA 88, 10,591–10,595.PubMedCrossRefGoogle Scholar
  24. 24.
    Tabin, C J., Bradley, S M., Bargmann, C I, and Weinberg, R A. (1982) Mechanism of activation of a human oncogene. Nature 300, 143–149.PubMedCrossRefGoogle Scholar
  25. 25.
    Kashani-Sabet, M., Funato, T., Florenes, V. A., Fodstad, O., and Scanlon, K J (1994) Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res 54, 900–902.PubMedGoogle Scholar
  26. 26.
    Kashani-Sabet, M., Funato, T., Tone, T., Jiao, L., Wang, W., Kashfian, B. I., Yoshida, E., Wu, A. M., Moreno, J. G., Traweek, S. T., Ahlering, T. E., and Scanlon, K. J. (1992) Reversal of human bladder malignant phenotype by an anti-ras ribozyme Antisense Res. Dev 2, 3–15.PubMedGoogle Scholar
  27. 27.
    Tone, T., Kashani-Sabet, M., Funato, T., Jiao, L., Shitara, T., Fodstad, O., and Scanlon, K. J. (1993) H-ras ribozyme-mediated suppression of the neoplastic phenotype of EJ cells In Viva 7, 471–476.Google Scholar
  28. 28.
    Scanlon, K. J., Kashani-Sabet, M., and Sowers, L. C. (1989) Overexpression of DNA replication and repair enzymes in cisplatin-resistant human colon carcinoma HCT8 cells and circumvention by azidothymidine. Cancer Commun 1, 269–273.PubMedGoogle Scholar
  29. 29.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.PubMedCrossRefGoogle Scholar
  30. 30.
    Scanlon, K. J. and Kashani-Sabet, M. (1988) Elevated expression of thymidylate synthase cycle genes in cisplatin-resistant human ovarian carcinoma A2780 cells Proc. Natl. Acad. Sci. USA 85, 650–653.PubMedCrossRefGoogle Scholar
  31. 31.
    Cech, T R. (1990) Self-splicing of group I introns.Ann Rev Biochem. 59, 543–568.PubMedCrossRefGoogle Scholar
  32. 32.
    Aitman, S. (1987) Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol. 62, 1–36.Google Scholar
  33. 33.
    Symons, R. S. (1992) Small catalytic RNAs.Ann. Rev. Biochem. 61, 641–671.PubMedCrossRefGoogle Scholar
  34. 34.
    Uhlenbeck, O. C. (1987) A small catalytic oligonucleotide Nature 328, 596–600.PubMedCrossRefGoogle Scholar
  35. 35.
    Haseliff, J. and Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334, 271–280.Google Scholar
  36. 36.
    Holm, P. S., Scanlon, K..I., and Dietel, M. (1994) Reversion of multidrug resistance in a MDR mediated drug resistant cell line by introduction of a hammerhead ribozyme. Br J Cancer 70, 239–243.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ohta, Y., Tone, T., Shitara, T., Funato, T., Jiao, L., Kashfian, B I, Yoshida, E., Horng, M, Tsai, P., Lauterbach, K., Kashani-Sabet, M, Florenes, V. A., Fodstad, O., and Scanlon, K. J. (1994) H-ras ribozyme-mediated alteration of the human melanoma phenotype. Ann. New York Acad. Sci 716, 242–253.CrossRefGoogle Scholar
  38. 38.
    Funato, T, Shitara, T., Tone, T., Jrao, L., Kashani-Sabet, M., and Scanlon, K. J. (1994) Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem. Pharm. 48, 1471–1475.PubMedCrossRefGoogle Scholar
  39. 39.
    Cross, M. and Dexter, T. M. (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64, 271–280.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim, S. J., Angel, P., Lafyatis, R., Hattori, K., Kim, K. Y., Sporn, M. B., Karin, M, and Roberts, A. B. (1990) Autoinduction of transforming growth factor 131 is mediated by the AP-1 complex. Mol. Cell. Biol. 10, 1492–1497.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Mercola, D. (1992) Platelet-derived growth factor, transformation, and antisense, in Gene Regulation. Biology of Antisense RNA and DNA (Erickson, R. P. and Izant, J. G., eds.), Raven, New York, pp. 329–353.Google Scholar
  42. 42.
    Yang, Y. Nunes, F. A., Berencsi, K., Furth, E. E., Gönczöl, E, and Wilson, J. E. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl. Acad Sci. USA 91, 4407–4411.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1997

Authors and Affiliations

  • Toshiya Shitara
    • 1
  • Kevin J. Scanlon
    • 2
  1. 1.Department of UrologyKitasato University HospitalKitasatoJapan
  2. 2.City of Hope National Medical CenterDuarte

Personalised recommendations