Methods for the Use of Retroviral Vectors for Transfer of the CFTR Gene to Airway Epithelium

  • John C. Olsen
  • Larry G. Johnson
  • James R. Yankaskas
Part of the Methods in Molecular Medicine book series (MIMM, volume 7)


Cystic fibrosis (CF) is a recessive genetic disease that affects the regulation of ion transport in the epithelia of various organs in the body including the lungs, pancreas, intestine, salivary glands, and urogenital tract. The protein encoded by the CF gene is an integral plasma membrane protein called the cystic fibrosis transmembrane conductance regulator (CFTR) and has been shown to function as a chloride channel (1). In the lungs, CFTR dysfunction affects electrolyte and fluid transport across the apical membrane of airway epithelial cells. There, sodium hyperabsorption and defective chloride secretion lead to dehydration of the fluids on the airway surface and, in turn, this leads to chronic infections and severe damage. The severity of CF lung disease and the potential accessibility of the airways to gene transfer vectors has led to proposals that gene therapy be applied for the treatment of CF lung disease (2).


Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Airway Epithelial Cell Sodium Butyrate Airway Surface Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Welsh, M. J. and Smith, A E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Ceil 73, 1251–1254.CrossRefGoogle Scholar
  2. 2.
    Wilson, J M. (1993) Vehicles for gene therapy. Nature 365, 691,692.CrossRefGoogle Scholar
  3. 3.
    Leigh, M. W, Kylander, J. E, Yankaskas, J. R, and Boucher, R. C. (1995) Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients. Am J. Respir Cell Mol Biol 12, 605–612.PubMedCrossRefGoogle Scholar
  4. 4.
    Boucher, R. C., Stutts, M. J., Knowles, M. R., Cantley, L., and Gatzy, J. T. (1986) Na+transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin. Invest 78, 1245–1252.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Gabriel, S. E., Clarke, L. L, Boucher, R C., and Stutts, M. J (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–268.PubMedCrossRefGoogle Scholar
  6. 6.
    Stutts, M. J., Knowles, M. R., Gatzy, J. T., and Boucher, R. C. (1986) Oxygen consumption and ouabain binding sites in cystic fibrosis nasal epithelium. Ped Res 20, 1316–1320.CrossRefGoogle Scholar
  7. 7.
    Yankaskas, J. R. and Boucher, R. C. (1990) Transformation of airway epithelial cells with persistence of cystic fibrosis or normal ion transport phenotypes. Methods Enzymol. 192, 565–571.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller, A. D. and Rosman, G J. (1989) Improved retroviral vectors for gene transfer and expression. Bio Techniques 7, 980–990.Google Scholar
  9. 9.
    Olsen, J C., Johnson, L G, Stutts, M. J., Sarkadi, B., Yankaskas, J. R., Swanstrom, R., and Boucher, R. C. (1992) Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum. Gene Ther. 3, 253–266.PubMedCrossRefGoogle Scholar
  10. 10.
    Bayle, J.-Y., Johnson, L._G., George, J. A S., Boucher, R. C., and Olsen, J. C. (1993) High efficiency gene transfer to primary monkey airway epitheltal cells with retrovirus vectors using the GALV receptor. Hum Gene Ther. 4, 161–170.PubMedCrossRefGoogle Scholar
  11. 11.
    Engelhardt, J. F., Yankaskas, J. R., and Wilson, J. M. (1992) In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J. Clin Invest. 90, 2598–2607.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Stuns, M. J., Gabriel, S. E., Olsen, J. C., Gatzy, J. T., O’Connell, T. L, Price, E M., and Boucher, R. C. (1993) Functional consequences of heterologous expression of the cystic fibrosis transmembrane conductance regulator in fibroblasts J. Biol. Chem. 268, 20,653–20,658.Google Scholar
  13. 13.
    Miller, A. D., and Buttimore, C. (1986) Redesign of retrovirns packaging cell lines to avoid recombination leading to helper virus production Mol. Cell. Biol. 6, 2895–2902.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Miller, A. D, Garcia, J. V, von Suhr, N., Lynch, C M., Wilson, C, and Eiden, M. V. (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol.65, 2220–2224.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Olsen, J. C., and Sechelski, J. (1995) Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther 6, 1195–1202.PubMedCrossRefGoogle Scholar
  16. 16.
    Yee, J.K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C., and Friedmann, T. (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes Proc Natl Acad. SCi USA 91, 9564–9568.PubMedCrossRefGoogle Scholar
  17. 17.
    Venglarik, C. J., Bridges, R. J., and Frizzell, R. A (1990) A simple assay for agonist-regulated Cl and K conductances in salt-secreting epithehal cells. Am J Physiol 28, C358–C364.Google Scholar
  18. 18.
    Yankaskas, J. R., Haizlip, J. E., Conrad, M., Koval, D., Lazarowskt, E., Paradise, A. M., Schlegel, R., Sarkadi, B., and Boucher, R C. (1993) Cystic fibrosis tracheal epithelial cells immortalized by HPV-18 oncogenes retain a well-differentiated phenotype. Am J, Physiol. 264, C1219–C1230.Google Scholar
  19. 19.
    Willumsen, N. J. and Boucher, R. C. (1991) Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium. Am. J Physiol 261, C332–C341.PubMedGoogle Scholar
  20. 20.
    Willumsen, N J., Davis, C. W., and Boucher, R. C. (1989) Intracellular Cl activity and cellular Cl pathways in cultured human airway epithelium. Am J. Physiol. 256, C1033–C1044.PubMedGoogle Scholar
  21. 21.
    Willumsen, N. J. and Boucher, R. C. (1989) Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelium Am J Physiol 256, C1054–1063.PubMedGoogle Scholar
  22. 22.
    Johnson, L. G., Olsen, J. C., Sarkadi, B., Moore, K. L., Swanstrom, R., and Boucher, R. C. (1992) Efficiency of gene transfer for restoration of normal airway epithehal function in cystic fibrosis. Nature Genet. 2, 21–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Clarke, L. L, Grubb, B. R., Gabriel, S. E., Smithies, O., Koller, B. H., and Boucher, R. C. (1992) Defective eprthelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257, 1125–1128.PubMedCrossRefGoogle Scholar
  24. 24.
    Willumsen, N. J., Davis, C. W., and Boucher, R. C. (1989) Cellular Cl transport in cultured cystic fibrosis airway epithelium. Am. J. Physiol 256, C1045–C1053.PubMedGoogle Scholar
  25. 25.
    Clarke, L. L., Burns, K. A., Bayle, J.-Y., Boucher, R. C., and Van Scott, M. R. (1992) Sodium-and chloride-conductive pathways in cultured mouse tracheal epithelium. Am. J Physiol. 263, L519–L525.PubMedGoogle Scholar
  26. 26.
    Van Scott, M. R., Lee, N. P, Yankaskas, J. R., and Boucher, R. C (1988) Effect of hormones on growth and function of cultured canine tracheal epithelial cells. Am. J. Physiol. 24, C237–C245.Google Scholar
  27. 27.
    Gruenert, D. C., Basbaum, C. B., Welsh, M. J., Li, M., Finkbeiner, W. E, and Nadel, J A. (1988) Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc Natl. Acad Sci USA 85, 5951–5955.PubMedCrossRefGoogle Scholar
  28. 28.
    Jetten, A. M., Yankaskas, J. R., Stutts, M J., Willumsen, N J., and Boucher, R. C. (1989) Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis airway epithelia Science 244, 1472–1475.PubMedCrossRefGoogle Scholar
  29. 29.
    Scholte, R J., Kansen, M., Hoogeveen, A. T., Willemse, R., Rhim, J. S., van der Kamp, A. W. M., and Bijman, J. (1989) Immortalization of nasal polyp epithelial cells from cystic fibrosis patients Exp Cell Res. 182, 559–571.PubMedCrossRefGoogle Scholar
  30. 30.
    Buchanan, J A., Yeger, H., Tabcharani, J. A., Jensen, T J., Auerbach, W., Hanrahan, J. W., Riordan, J. R., and Buchwald, M. (1990) Transformed sweat gland and nasal epithelial cell lines from control and cystic fibrosis individuals. J Cell Sci 95, 109–123.PubMedGoogle Scholar
  31. 31.
    Jefferson, D M., Valentich, J D., Marini, F. C., Grubman, S. A, Iannuzzi, M. C, Dorkin, H. L., Li, M., Kliger, K. W, and Welsh, M J. (1990) Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am. J Physiol 259, L496–L505.PubMedGoogle Scholar
  32. 32.
    Cozens, A L., Yezzi, M. J., Kunzelmann, K., Ohrui, T., Chin, L., Eng, K, Finkbeiner, W. E., Widdicombe, J. H, and Gruenert, D. C. (1994) CFTR expression and chloride excretion in polarized immortal human bronchial epithelial cells. Am.J Respir Cell Mel Biol 10, 38–47.Google Scholar
  33. 33.
    Kotani, H., Newton, P. B., III, Zhang, S., Chiang, Y. L., Otto, E., Weaver, L., Blaese, R. M, Anderson, W. F., and McGarrity, G. J. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther. 5, 19–28.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1997

Authors and Affiliations

  • John C. Olsen
    • 1
  • Larry G. Johnson
    • 1
  • James R. Yankaskas
    • 2
  1. 1.Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of MedicineUniversity of North CarolinaChapel Hill
  2. 2.Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment CenterUniversity of North CarolinaChapel Hill

Personalised recommendations