Skip to main content

Inverse PCR

An Efficient Approach to Cloning cDNA Ends

  • Protocol
PCR Cloning Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 67))

  • 7494 Accesses

Abstract

Since the first report on cDNA cloning in 1972 (1), this technology has developed into a powerful and universal tool in isolation, characterization, and analysis of both eukaryotic and prokaryotic genes. However, the conventional methods of cDNA cloning require much effort to generate a library that is packaged in phage or plasmid, and then surveyed in a large number of recombinant phages or plasmids. There are three major limitations in these methods. First, a substantial amount (at least 1 mg) of purified mRNA is needed as starting material to generate libraries of sufficient diversity (2). Second, the intrinsic difficulty of multiple sequential enzymatic reactions required for cDNA cloning often leads to low yields and truncated clones (3). Finally, screening of a library with hybridization technique is time-consuming. PCR technology can simplify and improve cDNA cloning. Using PCR with two gene-specific primers, a piece of known sequence cDNA can be specifically and efficiently amplified and isolated from very small numbers (<104) of cells (4). However, it is often difficult to isolate full-length cDNA copies of mRNA on the basis of very limited sequence information. The unknown sequence flanking a small stretch of the known sequence of DNA cannot be amplified by the conventional PCR. Recently, anchored PCR (57) and inverse PCR (810) have been developed to resolve this problem. Anchored PCR techniques have the common point that DNA cloning goes from a small stretch of known DNA sequence to the flanking unknown sequence region with the aid of a gene-specific primer at one end and a universal primer at other end. Because of only one gene-specific primer in the anchored PCR it is easier to get a high level of nonspecific amplification by PCR than with two gene-specific primers (10,11). The major advantage of inverse PCR (IPCR) is to amplify the flanking unknown sequence by using two gene-specific primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma, I. M., Temple, G. F., Fan, H., and Baltimore, D. (1972) In vitro synthesis of double-stranded DNA complimentary to rabbit reticulocyte 10S RNA. Nature 235, 163–169.

    Article  CAS  Google Scholar 

  2. Akowitz, A., and Mamuelidis, L. (1989) A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA. Gene 81, 295–306.

    Article  CAS  PubMed  Google Scholar 

  3. Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T., and Arai, K. (1987) High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 154, 3–28.

    Article  CAS  PubMed  Google Scholar 

  4. Brenner, C. A., Tam, A. W., Nelson, P. A., Engleman, E. G., Suzuki, N., Fry, K. E., and Larrick, J. W. (1989) Message amplification phenotyping (MAPPing): a technique to simultaneously measure multiple mRNAs from small numbers of cells. Biotechniques 7, 1096–1103.

    CAS  PubMed  Google Scholar 

  5. Frohman, M. A. (1990) RACE: Rapid amplification of cDNA ends, in PCR Protocols. A Guide to Methods and Applications. (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, San Diego, CA, pp. 28–38.

    Google Scholar 

  6. Shyamala, V. and Ames, G. F.-L. (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene 84, 1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Huang, S-H., Jong, A. Y., Yang, W., and Holcenberg, J. (1993) Amplification of gene ends from gene libraries by PCR with single-sided specificity. Methods Mol. Biol. 15, 357–363.

    CAS  PubMed  Google Scholar 

  8. Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–625.

    CAS  PubMed  Google Scholar 

  9. Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16, 81–86.

    Article  Google Scholar 

  10. Huang, S.-H., Hu, Y. Y., Wu, C.-H., and Holcenberg, J. (1990) A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RNA by applying the inverse polymerase chain reaction. Nucleic Acids Res. 18, 1922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Delort, J., Dumas, J. B., Darmon, M. C., and Mallet, J. (1989) An efficient strategy for cloning 5′ extremities of rare transcrips permits isolation of multiple 5′-untranslated regions of rat tryptophan hydroxylase mRNA. Nucleic Acids Res. 17, 6439–6448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cusi, M. G., Cioe’, L., and Rovera, G. (1992) PCR amplification of GC-rich templates containing palindromic sequences using initial alkali denaturation. Biotechniques 12, 502–504.

    CAS  PubMed  Google Scholar 

  13. Lau, E. C., Li, Z.-Q., and Slavkin, S. C. (1993) Preparation of denatured plasmid templates for PCR amplification. Biotechniques 14, 378.

    CAS  PubMed  Google Scholar 

  14. Green, I. R. and Sargan, D. R. (1991) Sequence of the cDNA encoding ovine tumor necrosis factor-a: problems with cloning by inverse PCR. Gene 109, 203–210.

    Article  CAS  PubMed  Google Scholar 

  15. Zilberberg, N. and Gurevitz, M. (1993) Rapid Isolation of full-length cDNA clones by “Inverse PCR:” purification of a scorpion cDNA family encoding α-neurotoxins. Anal. Biochem. 209, 203–205.

    Article  CAS  PubMed  Google Scholar 

  16. Austin, C. A., Sng, J.-H., Patel, S., and Fisher, L. M. (1993) Novel HeLa topoisomerase II is the IIβ isoform: complete coding sequence and homology with other type II topoisomerases. Biochim. Biophys. Acta 1172, 283–291.

    Article  CAS  PubMed  Google Scholar 

  17. Delidow, B. C., Lynch, J. P., Peluso, J. J., and White, B. A. (1993) Polymerase Chain Reaction: Basic Protocols. Methods Mol. Biol. 15, 1–29.

    CAS  PubMed  Google Scholar 

  18. Davis, L. G., Dibner, M. D., and Battey, J. F. (1986) Basic Methods in Molecular Biology, Elsevier, New York.

    Google Scholar 

  19. Kru, M. S. and Berger, S. L. (1987) First strand cDNA synthesis primed by oligo(dT). Methods Enzymol. 152, 316–325.

    Article  Google Scholar 

  20. Promega (1991) Protocols and Applications (2nd ed.), pp. 199–238.

    Google Scholar 

  21. Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) Molecular Cloning, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  22. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  23. Moon, I. S. and Krause, M. O. (1991) Common RNA polymerase I, II, and III upstream elements in mouse 7SK gene locus revealed by the inverse polymerase chain reaction. DNA Cell Biol. 10, 23–32.

    Article  CAS  PubMed  Google Scholar 

  24. Strobel, S. A. and Dervan, P. B. (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249, 73–75.

    Article  CAS  PubMed  Google Scholar 

  25. Dreyer, G. B. and Dervan, P. B. (1985) Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA.Fe(II). Proc Nucl. Acad. Sci. USA 82, 968–972.

    Article  CAS  Google Scholar 

  26. Zhang, H., Scholl, R., Browse, J., and Somerville, C. (1988) Double-strand DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res. 16, 1220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sugino, A., Goodman, H. M., Heynecker, H. L., Shine, J., Boyer, H. W, and Cozzarelli, N. R. (1977) Interaction of bacteriophage T4 RNA and DNA ligases in joining of duplex DNA at base-paired ends. J. Biol. Chem. 252, 3987.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Huang, SH. (1997). Inverse PCR. In: White, B.A. (eds) PCR Cloning Protocols. Methods in Molecular Biology™, vol 67. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-483-6:287

Download citation

  • DOI: https://doi.org/10.1385/0-89603-483-6:287

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-483-9

  • Online ISBN: 978-1-59259-553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics