Using the SELEX Combinatorial Chemistry Process to Find High Affinity Nucleic Acid Ligands to Target Molecules

  • Craig Tuerk
Part of the Methods in Molecular Biology™ book series (MIMB, volume 67)


The SELEX (Systematic Evolution of Ligands by EXponential enrichments) combinatorial chemistry process is a procedure by which nucleic acid ligands of high affinity can be isolated against a molecular target (1). A wide variety of target molecules have been used successfully in the SELEX process, including nucleic acid binding proteins (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), nucleic acid enzymes (1,20, 21, 22, 23, 24, 25), proteins with no known function involving nucleic acids (26, 27, 28, 29, 30, 31), a peptide (32), an RNA hairpin (33), and small molecules, such as organic dyes (34), amino acids (35,36), cyanocobalamin (37), theophylline (38), and ATP (39,40). The procedure involves:
  1. 1.

    The synthesis of a template containing a variable region flanked by 5′ and 3′ fixed regions that enable amplification by PCR,

  2. 2.

    Conversion of the template to an amplified library of candidate ligands,

  3. 3.

    A binding reaction in which a fraction of the candidate ligands are bound by the target molecule;

  4. 4.

    Separation of target molecule/ligand complexes from unbound candidate ligands;

  5. 5.

    Purification of the nucleic acid ligands from the separated complexes; and

  6. 6.

    Replication of the nucleic acid ligand population.



Phenol Urea Manifold Chloroform Electrophoresis 


  1. 1.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment, RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.PubMedCrossRefGoogle Scholar
  2. 2.
    Blackwell, T. K. and Weintraub, H. (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104–1110.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsai, D. E., Harper, D. S., and Keene, J. D. (1991) U1 snRNP-A protein selects a 10 nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res. 19, 4931–4936.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bartel, D., Zapp, M. L., Green, M. R., and Szostak, J. W. (1991) HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67, 529–536.PubMedCrossRefGoogle Scholar
  5. 5.
    Schneider, D., Tuerk, C., and Gold, L. (1992) Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J. Mol. Biol. 228, 862–869.PubMedCrossRefGoogle Scholar
  6. 6.
    Christianson, A. M., King, D. L., Hatzivassiliou, E., Casas, J. E., Hallenbeck, P. L., Nikodem, V. M., Mitsialis, S. A., and Kafatos, F. C. (1992) DNA binding and heteromerization of the Drosophila transcription factor chorion factor 1/ultra-spiracle. Proc. Natl. Acad. Sci. USA 89, 11,503–11,507.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai, D. E., Kenan, D. J., and Keene, J. D. (1992) In vitro selection of an RNA epitope immunologically crossreactive with a peptide. Proc. Natl. Acad. Sci. USA 89, 8864–8868.PubMedCrossRefGoogle Scholar
  8. 8.
    Tuerk, C. and MacDougal-Waugh, S. (1993) In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 protein. Gene 137, 33–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Schneider, D., Gold, L., and Platt, T. (1993) Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J. 7, 201–207.PubMedGoogle Scholar
  10. 10.
    de Jong, R., van der Hegden, J., and Meijlink, F. (1993) DNA-binding specificity of the S8 homeodomain. Nucleic Acids Res. 21, 4711–4720.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tsai, D. E. and Keene, J. D. (1993) In vitro selection of RNA epitopes using autoimmune patient serum. J. Immunol. 150, 1137–1145.PubMedGoogle Scholar
  12. 12.
    Tuerk, C., MacDougal-Waugh, S., Hertz, G. Z., and Gold, L. (1994) In vitro evolution of functional nucleic acids: high-affinity RNA ligands of the HIV-1 rev protein, in The Polymerase Chain Reaction (Mullis, K. B., Ferre, F., and Gibbs, R. A., eds.), Bukhauser, Boston, MA, pp. 233–243.CrossRefGoogle Scholar
  13. 13.
    Sakashita, E. and Sakamoto, H. (1994) Characterization of RNA binding specificity of the Drosophila sex-lethal protein by in vitro ligand selection. Nucleic Acids Res. 22, 4082–4086.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Paca-Uccaralertkun, S., Zhao, L. J., Adya, N., Cross, J. V., Cullen, B. R., Boros, I. M., and Giam, C. Z. (1994) In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator. Tax. Mol. Cell Biol. 14, 456–462.Google Scholar
  15. 15.
    Gorlach, M., Burd, C. G., and Dreyfuss, G. (1994) The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J. Biol. Chem. 269, 23,074–23,078.PubMedGoogle Scholar
  16. 16.
    Gorlach, M., Burd, C. G., and Dreyfuss, G. (1994) The mRNA poly (A)-binding protein, localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407.PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson, B. R., Menotti, E., Bonnard, C., and Kuhn, L. C. (1994) Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J. Biol. Chem. 269, 17,481–17,489.PubMedGoogle Scholar
  18. 18.
    Blackwell, T. K., Bowerman, B., Priess, J. R., and Weintraub, H. (1994) Formation of a monomeric DNA binding domain by Skin-1 bZIP and homeodomain elements. Science 266, 621–628.PubMedCrossRefGoogle Scholar
  19. 19.
    Andres, V., Chiara, M. D., and Mahdavi, V. (1994) A new bipartite DNA-binding domain: cooperative interaction between the cut repeat and homeo domain of the cut homeo proteins. Genes Dev. 8, 245–257.PubMedCrossRefGoogle Scholar
  20. 20.
    Tuerk, C., MacDougal, S., and Gold, L. (1992) RNA pseudoknots that inhibit human immunodeficiency virus type I reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992.PubMedCrossRefGoogle Scholar
  21. 21.
    Peterson, E. T., Blank, J., Sprinzl, M., and Uhlenbeck, O. C. (1993) Selection for active E. coli tRNA(Phe) variants from a randomized library using two proteins. EMBO J. 12, 2959–2967.PubMedGoogle Scholar
  22. 22.
    Chen, H. and Gold, L. (1994) Selection of high-affinity RNA ligands to reverse transcriptase, inhibition of cDNA synthesis and RNase H activity. Biochemistry 33, 8746–8756.PubMedCrossRefGoogle Scholar
  23. 23.
    Peterson, E. T., Pan, T., Coleman, J., and Uhlenbeck, O. C. (1994) In vitro selection of small RNAs that bind to Escherichia coli phenylalanyl-tRNA synthetase. J. Mol. Biol. 242, 186–192.PubMedCrossRefGoogle Scholar
  24. 24.
    Conrad, R., Keranen, L. M., Ellington, A. D., and Newton, A. C. (1994) Isozyme-specific inhibition of protein kinase C by RNA aptamers. J. Biol. Chem. 269, 32,051–32,054.PubMedGoogle Scholar
  25. 25.
    Nazarenko, I. A. and Uhlenbeck, O. C. (1995) Defining a smaller RNA substrate for elongation factor Tu. Biochemistry 34, 2545–2552.PubMedCrossRefGoogle Scholar
  26. 26.
    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., and Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564,565.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsai, D. E., Kenan, D. J., and Keene, J. D. (1992) In vitro selection of an RNA epitope immunologically crossreactive with a peptide. Proc. Natl. Acad. Sci. USA 89, 8864–8868.PubMedCrossRefGoogle Scholar
  28. 28.
    Jellinek, D., Lynott, C. K., Rifkin, D. B., and Janjic, N. (1993) High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc. Natl. Acad. Sci. USA 90, 11,227–11,231.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin, Y., Qui, Q., Gill, S. C., and Jayasena, S. D. (1994) Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22, 5229–5234.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kubik, M. F., Stephens, A. W., Schneider, D., Marlar, R. A., and Tasset, D. (1994) Nucleic Acids Res. 22, 2619–2626.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Jellinek, D., Green, L. S., Bell, C., and Janjic, N. (1994) Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry 33, 10,450–10,456.PubMedCrossRefGoogle Scholar
  32. 32.
    Nieuwlandt, D., Wecker, M., and Gold, L. (1995) In vitro selection of RNA ligands to substance P. Biochemistry 34, 5651–5659.PubMedCrossRefGoogle Scholar
  33. 33.
    Mishra, R. K. and Toulme, J. J. (1994) In vitro selection of antisense oligonucleotides targeted to a hairpin structure. CR Acad. Sci. III 317, 977–982.Google Scholar
  34. 34.
    Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.PubMedCrossRefGoogle Scholar
  35. 35.
    Connell, G. J., Illangesekare, M., and Yarus, M. (1993) Three small ribooligonucleotides with specific arginine sites. Biochemistry 32, 5497–5502.PubMedCrossRefGoogle Scholar
  36. 36.
    Connell, G. J. and Yarus, M. (1994) RNAs with dual specificity and dual RNAs with similar specificity. Science 264, 1137–1141.PubMedCrossRefGoogle Scholar
  37. 37.
    Lorsch, J. R. and Szostak, J. W. (1994) In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33, 973–982.PubMedCrossRefGoogle Scholar
  38. 38.
    Jenison, R. D., Gill, S. C., Pardi, A., and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425–1429.PubMedCrossRefGoogle Scholar
  39. 39.
    Sassanfar, M. and Szostak, J. W. (1993) An RNA motif that binds ATP. Nature 364, 550–553.PubMedCrossRefGoogle Scholar
  40. 40.
    Huizenga, D. E. and Szostak, J. W. (1995) A DNA aptamer that binds adensosine and ATP. Biochemistry 34, 656–665.PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen, K. B., Green, L., MacDougal-Waugh, S., and Tuerk, C. (1994) Characterization of an in vitro-selected RNA ligand to the HIV-1 Rev. protein. J. Mol. Biol. 235, 237–247.PubMedCrossRefGoogle Scholar
  42. 42.
    Irvine, D., Tuerk, C., and Gold, L. (1990) SELEX with integrated optimization by nonlinear analysis. J. Mol. Biol. 222, 739–761.CrossRefGoogle Scholar
  43. 43.
    Crameri, A. and Stemmer, W. P. (1993) 10(20)-fold aptamer library amplification without gel purification. Nucleic Acids Res. 21, 4410.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Green, L., Waugh, S., Binkley, J. P., Hostomska, Z., Hostomsky, Z., and Tuerk, C. (1995) Comprehensive chemical modification interference and nucleotide substitution analysis of an RNA pseudoknot inhibitor to HIV-1 reverse transcriptase. J. Mol. Biol. 247, 60–68.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Craig Tuerk
    • 1
  1. 1.Morehead State UniversityMorehead

Personalised recommendations