Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 68))

Abstract

The efforts to localize genes to human chromosomes date back to the early 1970s. Although few techniques were available to map genes, many scientists recognized that the ability to determine the location of genes and DNA sequences on human chromosomes would not only facilitate the identification of disease-related genes, but might also provide important knowledge on the organization of chromosomes and the mechanisms of gene expression. With the introduction of somatic cell genetics and the development of hybrid cell panels in the mid-1970s investigators were now capable of mapping sequences to whole chromosomes and, in some cases, to specific chromosome regions or bands. Nonetheless, the major breakthrough in mapping efforts was provided by the development of in situ hybridization of isotopically labeled probes; this technique provided the first method by which scientists could actually visualize the hybridization of a DNA probe to chromosomes (1,2). Using this technique, genes could be mapped to a few chromosome bands and often to a single band. The disadvantages of this method were the relatively poor spatial resolution owing to scatter of the radioactive emissions, the length of time for the procedure (long autoradiographic exposure times were typically required), and the poor stability of the probes. The introduction of techniques to detect hybridized probes using fluorochromes in the late 1970s circumvented many of these problems (3,4); however, it was not until the end of the next decade that fluorescence in situ hybridization (FISH) techniques became widely applicable (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, H. J., Buckland, R. A., and Pardue, M. L. (1974) Location of the genes coding for 18 S and 28 S ribosomal RNA in the human genome. Chromosoma 48, 405–426.

    Article  CAS  Google Scholar 

  2. Harper, M. E. and Saunders, G. F. (1981) Localization of single copy DNA sequences on G-banded chromosomes by in situ hybridization. Chromosoma 83, 431–439.

    Article  PubMed  CAS  Google Scholar 

  3. Rudkin, G. T. and Stollar, B. D. (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265, 472,473.

    Article  Google Scholar 

  4. Bauman, J. G., Wiegant, J., Borst, P., and van Duijn, P. (1980) A new method for fluorescence microscopical localization of specific sequences by in situ hybridization of fluorochrome-labelled RNA. Exp. Cell Res. 128, 485–490.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence, J. B., Villnave, C. A., and Singer, R. H. (1988) Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell 52, 51–61.

    Article  PubMed  CAS  Google Scholar 

  6. Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., and Gray, J. W. (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA 85, 9138–9142.

    Article  PubMed  CAS  Google Scholar 

  7. Trask, B. J. (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 7, 149–154.

    PubMed  CAS  Google Scholar 

  8. Le Beau, M. M. (1993) Fluorescence in situ Hybridization in Cancer Diagnosis, in Important Advances in Oncology (de Vita, V. T., Jr, Hellman, S., and Rosenberg, S. A., eds.) J. B. Lippincott, Philadelphia, pp. 29–45.

    Google Scholar 

  9. Lichter, P., Cremer, T., Borden J., Manuelides, L., and Ward, D. C. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234.

    Article  PubMed  CAS  Google Scholar 

  10. Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baas, F., and van der Ploeg, M. (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370.

    Article  PubMed  CAS  Google Scholar 

  11. Lichter, P. and Ward, D. C. (1990) Is non-isotopic in situ hybridization finally coming of age? Nature 345, 93–94.

    Article  PubMed  CAS  Google Scholar 

  12. Lengauer, C., Green, E. D., and Cremer, T. (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13, 826–828.

    Article  PubMed  CAS  Google Scholar 

  13. Baldini, A. and Ward, D. C. (1991) In situ hybridization of human chromosomes with Alu-PCR products: a simultaneous karyotype for gene mapping studies. Genomics 9, 770–774.

    Article  PubMed  CAS  Google Scholar 

  14. Telenius, H., Carter, N. P., Bebb, C., Nordenskjold, M., Ponder, B. A. J., and Tunnacliffe, A. (1992) Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics 13, 718–724.

    Article  PubMed  CAS  Google Scholar 

  15. Bohlander, S. K., Espinosa, R. III, Le Beau, M. M., Rowley, J. D., and Diaz, M. O. (1992) A method for the rapid sequence-independent amplification of microdissected chromosomal material. Genomics 13, 1322–1324.

    Article  PubMed  CAS  Google Scholar 

  16. Speicher, M. R., du Manoir, S., Schrock, E., Holtgreve, H., Schoell, B., Lengauer, C., Cremer, T., and Reid, T. (1993) Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA amplification. Hum. Mol. Genet. 11, 1907–1914.

    Article  Google Scholar 

  17. Wiegant, J., Reid, T., Nederlof, P. M., van der Ploeg, M., Tanke, H. J., and Raap, A. K. (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res. 19, 3237–3241.

    Article  PubMed  CAS  Google Scholar 

  18. Reid, T., Baldini, A., Rand, T., and Ward, D. C. (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging. Proc. Natl. Acad. Sci. USA 89, 1388–1392.

    Article  Google Scholar 

  19. Lawrence, J. B., Carter K. C., and Gerdes, M. J. (1992) Extending the capabilities of interphase chromatin mapping. Nature Genet. 2, 171,172.

    Article  Google Scholar 

  20. Parra, I and Windle, B. (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet. 5, 17–21.

    Article  PubMed  CAS  Google Scholar 

  21. Wiegant, J., Kalle, W., Mullenders, L., Brookes, S., Hoovers, J. M. N., Dauwerse, J. G., van Ommen, G. J. B., and Raap, A. K. (1992) High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591.

    Article  PubMed  CAS  Google Scholar 

  22. Heng, H. H. Q., Squire, J., and Tsui, L.-C. (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA, 89, 9509–9513.

    Article  PubMed  CAS  Google Scholar 

  23. Fidlerova, H., Senger, G., Kost, M., Sanseau, P., and Sheer, D. (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 65, 203–205.

    Article  PubMed  CAS  Google Scholar 

  24. Cai, W., Aburatani, H., Stanton, V. P., Housman, D. E., Wang, Y.-K., and Schwartz, D. C. (1995) Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces. Proc. Natl. Acad. Sci. USA 92, 5164–5168.

    Article  PubMed  CAS  Google Scholar 

  25. Rowley, J. D., Diaz, M. O., Espinosa, R., Patel, Y. D., van Melle, E., Ziemin, S., Taillon-Miller, P., Lichter, P., Evans, G. A., Kersey, J. D., Ward, D. C., Domer, P. H., and Le Beau, M. M. (1990) Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: Identification of 11q23 translocation breakpoints with a yeast artificial chromosome. Proc. Natl. Acad. Sci. USA 89, 9358–9362.

    Article  Google Scholar 

  26. Le Beau, M. M., Espinosa, R. III, Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., and Westbrook, C. A. (1993) Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in myeloid leukemias. Proc. Natl. Acad. Sci. USA 90, 5484–5488.

    Article  PubMed  Google Scholar 

  27. Boultwood, J., Fidler, C., Lewis, S., Kelly, S., Sheridan, H., Littlewood, T. J., Buckle, V. J., and Wainscoat, J. S. (1994) Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q-syndrome. Delineation of the critical region on 5q and identification of a 5q-breakpoint. Genomics 19, 425–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Espinosa, R., Le Beau, M.M. (1997). Gene Mapping by FISH. In: Boultwood, J. (eds) Gene Isolation and Mapping Protocols. Methods in Molecular Biology™, vol 68. Humana Press. https://doi.org/10.1385/0-89603-482-8:53

Download citation

  • DOI: https://doi.org/10.1385/0-89603-482-8:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-482-2

  • Online ISBN: 978-1-59259-554-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics