Skip to main content

Transplantation of Cells in an immunoisolation Device for Gene Therapy

  • Protocol
Recombinant Protein Protocols

Abstract

Treatment of genetic deficiency diseases, the so-called inborn errors of metabolism has been fairly limited in scope. Whereas there has been significant success with injections of the missing gene product in cases such as diabetes and hemophilia, management of most genetic diseases has been limited to treatment of various clinical symptoms and not the underlying disease state. For the past decade, many groups have been working toward the goal of gene therapy, i.e., the correction of genetic deficiency diseases by the introduction of a correct copy of the defective gene into affected individuals. Many different diseases have been targeted (see ref. 1 for review) utilizing a variety of cells and animal models (114). Although many groups have been able to obtain high levels of gene expression in vitro, in vivo expression has been disappointing. In most cases, while the gene product could be detected within hours after introduction into the host, high level expression was not detectable after 30–45 d (4,5,11,12,1419).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, R. A. and Anderson, W. F. (1993) Human gene therapy. Ann. Rev. Biochem. 62, 191–217.

    Article  PubMed  CAS  Google Scholar 

  2. Lozier, J. N. and Brinkhous, K. M. (1994) Gene therapy and the hemophilias. JAMA 27, 47–51.

    Article  Google Scholar 

  3. Anson, D. S., Hock, R. A., Austen, D., Smith, K. J., Brownlee, G. G., Verma, I. M., and Miller, A. D. (1987) Towards gene therapy for hemophilia B. Mol. Biol. Med. 4, 11–20.

    PubMed  CAS  Google Scholar 

  4. Zhou, J. M., Dai, Y. F., Qiu, X. F., Hou, G. Y., Akira, Y., and Xue, J. L. (1993) Expression of human factor IX cDNA in mice by implants of genetically modified skin fibroblasts from a hemophilia B patient. Sci. China (B) 36, 1082–1092.

    CAS  Google Scholar 

  5. Kay, M. A., Landen, C. N., Rothenberg, S. R., Taylor, L. A., Leland, F., Wiehle, S., Fang, B., Bellinger, D., Finegold, M., Thompson, A. R., Read, M. S., Brinkhous, K. M., and Woo, S. L. C. (1994) In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc. Natl. Acad. Sci. USA 91, 2353–2357.

    Article  PubMed  CAS  Google Scholar 

  6. Li, Q., Kay, M. A., Finegold, M., Stratford-Perricaudet, L. D., and Woo, S. L. (1993) Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene. Ther. 4, 403–409.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, H.-W., Ofosu, F. A., and Chang, P. L. (1993) Expression of human factor IX by microencapsulated recombinant fibroblasts. Hum. Gene. Ther. 4, 291–301.

    Article  PubMed  CAS  Google Scholar 

  8. Yao, S.-N., Wilson, J. M., Nabel, E. G., Kurachi, S., Hachiya, H. L., and Kurachi, K. (1991) Expression of human factor IX in rat capillary endothelial cells toward somatic gene therapy for hemophilia B. Proc. Natl. Acad. Sci. USA 88, 8101–8105.

    Article  PubMed  CAS  Google Scholar 

  9. Anson, D. S., Austen, D. E. G., and Brownlee, G. G. (1985) Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells. Nature 315, 683–685.

    Article  PubMed  CAS  Google Scholar 

  10. de la Salle, H., Altenburger, W., Elkaim, R., Dott, K., Dieterle, A., Drillien, R., Cazenave, J.-P., Tolstoshev, P., and Lecocq, J.-P. (1985) Active gamma-carboxylated human factor IX expressed using recombinant DNA techniques. Nature 316, 268–270.

    Article  PubMed  Google Scholar 

  11. Axelrod, J. H., Read, M. S., Brinkhous, K. M., and Verma, I. M. (1990) Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophiliac dogs. Proc. Natl._Acad. Sci. USA 87, 5173–5177.

    Article  PubMed  CAS  Google Scholar 

  12. Palmer, T. D., Thompson, A. R., and Miller, D. (1989) Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood 73, 438–445.

    PubMed  CAS  Google Scholar 

  13. Armentano, D., Thompson, A. R., Darlington, G., and Woo, S. L. C. (1990) Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer. Potential for gene therapy of hemophilia B. Proc. Natl. Acad. Sci. USA 87, 6141–6145.

    Article  PubMed  CAS  Google Scholar 

  14. Palmer, T. D., Rosman, G. J., Osborne, W. R., and Miller, A. D. (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl._Acad. Sci. USA 88, 1330–1334.

    Article  PubMed  CAS  Google Scholar 

  15. Yao, S.-N. and Kurachi, K. (1992) Expression of human factor IX in mice after injection of genetically modified myoblasts. Proc. Natl. Acad. Sci. USA. 89, 3357–3361.

    Article  PubMed  CAS  Google Scholar 

  16. St. Louis, D. and Verma, I. M. (1988) An alternative approach to somatic cell gene therapy. Proc. Natl. Acad. Sci. USA 85, 3150–3154.

    Article  PubMed  CAS  Google Scholar 

  17. Scharfmann, R., Axelrod, J. H., and Verma, I. M. (1991) Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl._Acad. Sci. USA 88, 4626–4630.

    Article  PubMed  CAS  Google Scholar 

  18. Dai, Y., Roman, M., Naviaux, R. K., and Verma, I. M. (1992) Gene therapy via primary myoblasts. long-term expression of factor IX protein following transplantation in vivo. Proc. Natl. Acad. Sci. USA 89, 10,892–10,895.

    Article  PubMed  CAS  Google Scholar 

  19. Miyanohara, A., Johnson, P. A., Elam, R. L., Dai, Y., Witztum, J. L., Verma, I. M., and Friedmann, T. (1992) Direct gene transfer to the liver with herpes simplex virus type 1 vectors. transient production of physiologically relevant levels of circulating factor IX. New Biol. 4, 238–246.

    PubMed  CAS  Google Scholar 

  20. Thompson, J. A., Haudenschild, C. C., Anderson, K. D., DiPietro, J. M., Anderson, W. F., and Maclag, T. (1989) Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo. Proc. Natl._Acad. Sci. USA 86, 7928–7932.

    Article  PubMed  CAS  Google Scholar 

  21. Brauker, J. H., Carr-Brendel, V., Martinson, L. A., Crudele, J., Johnston, W. D., and Johnson, R. C. (1995) Neovascularization of synthetic membranes directed by membrane architecture. J. Biomed. Mat. Res. 29, 1517–1524.

    Article  CAS  Google Scholar 

  22. Brauker, J., Martinson, L. A., Young, S. K., and Johnson, R. C. (1996) Local inflammatory response around diffusion chambers containing xenografts. Transplantation 61, 1671–1677.

    Google Scholar 

  23. Algire, G. H., Weaver, J. M., and Prehn, R. T. (1954) Growth of cells in vivo in diffusion chambers I. survival of homografts in immunized mice. J. Natl. Cancer Inst. 15, 493–507.

    PubMed  CAS  Google Scholar 

  24. Larson, P. J. and High, K. A. (1992) Biology of inherited coagulopathies factor IX Hematol. Oncol. Clin. North. Am. 6, 999–10

    PubMed  CAS  Google Scholar 

  25. Kurachi, K., Furukawa, M., Yao, S. N., and Kurachi, S. (1992) Biology of factor IX. Hematol. Oncol. Clin. North Am. 6, 991–997.

    PubMed  CAS  Google Scholar 

  26. Carr-Brendel, V., Lazier, J., Thomas, T., Saeed, B., Young, S., Crudele, J., Martinson, L., Roche, B., Boggs, D., Pauley, R., Maryanov, D., Josephs, S., High, K., Johnson, R., and Brauker, J. (1993) An immunoisolation device for implantation of genetically engineered cells: long term expression of factor IX in rats. J. Cell Biochem. 17E, 224.

    Google Scholar 

  27. Delves, M. N. (1994) Cellular Immunology Labfax 1994 Academic, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Carr-Brendel, V.E. et al. (1997). Transplantation of Cells in an immunoisolation Device for Gene Therapy. In: Tuan, R.S. (eds) Recombinant Protein Protocols. Methods in Molecular Biology™, vol 63. Humana Press. https://doi.org/10.1385/0-89603-481-X:373

Download citation

  • DOI: https://doi.org/10.1385/0-89603-481-X:373

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-481-5

  • Online ISBN: 978-1-59259-549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics