Reporter Systems

  • Debyra Groskreutz
  • Elaine T. Schenborn
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 63)

Abstract

Genetic reporter systems have contributed greatly to the study of eukaryotic gene expression and regulation. This chapter will describe what an ideal reporter system is and outline the many uses of genetic reporters. Furthermore, the currently available reporter genes and assays will be described in terms of their specific applications and limitations.

Keywords

Hydrolysis Codon Lactose Acetyl Sorting 

References

  1. 1.
    Rosenthal, N. (1987) Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 152, 704–720.PubMedCrossRefGoogle Scholar
  2. 2.
    Alam, J. and Cook J. L. (1990) Reporter genes, application to the study of mammalian gene transcription. Anal. Biochem. 188, 245–254.PubMedCrossRefGoogle Scholar
  3. 3.
    Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051.PubMedGoogle Scholar
  4. 4.
    Boshart, M., Kluppel, M., Schmidt, A., Schutz, G., and Luckow, B. (1992) Reporter constructs with low background activity utilizing the cat gene. Gene. 110, 129–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Kushner, P. J., Baxter, J. D., Duncan, K. G., Lopez, G. N., Schaufele, F., Uht, R. M., Webb P., and West, B. L. (1994) Eukaryotic regulatory elements lurking in plasmid DNA: The activator protein-1 site in pUC. Mol. Endo. 8, 405–407.CrossRefGoogle Scholar
  6. 6.
    Berger, J., Hauber, J., Bauber, R., Geiger, R., and Cullen, B. (1988) Secreted placental alkaline phosphatase a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene. 66, 1–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Sherf, B. A. and Wood, K. V. (1995) Firefly luciferase engineered for improved genetic reporting. Promega Notes. 49, 14–21.Google Scholar
  8. 8.
    Kozak, M. (1989) The scanning model for translation an update. J. Cell. Biol. 108, 229–241.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonin, A. L., Gossen M., and Bujard, H. (1994) Photinus pyralis luciferase: vectors that contain a modified luc coding sequence allowing convenient transfer into other systems. Gene. 141, 75–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Henikoff, S. (1987) Undirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 155, 156–165.PubMedCrossRefGoogle Scholar
  11. 11.
    Fu, L. N., Ye, R. Q., Browder, L. W., and Johnston, R. N. (1991) Translational potentiation of messenger RNA with secondary structure in Xenopus. Science 251, 807–810.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, S. J., Park, K., Koeller, D., Kim K. Y., Wakefield, L. M., Sporn, M. B., and Roberts, A. B. (1992) Post-transcriptional regulation of the human transforming growth factor-beta 1 gene. J. Biol. Chem. 267, 13,702–13,707.PubMedGoogle Scholar
  13. 13.
    Kozak, M. (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 83, 2850–2854.PubMedCrossRefGoogle Scholar
  14. 14.
    Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNA’s. Mol. Cell. Biol. 9, 5134–5142.PubMedGoogle Scholar
  15. 15.
    Rao, C. D., Peck, M., Robbins, K. C., and Aaronson, S. A. (1988) The 5′ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol. Cell. Biol. 8, 284–292.PubMedGoogle Scholar
  16. 16.
    Kozak, M. (1984) Selection of initiation sites by eucaryotic ribosomes effect of inserting AUG triplets upstream from the coding sequence of preproinsulin. Nucleic Acids Res. 12, 3873–3893.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, C., Simonsen, C. C., and Levinson, A. D. (1984) Initiation of translation at internal AUG codons in mammalian cells. Nature 309, 82–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernstein, P., and Ross, J. (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14, 373–377.PubMedCrossRefGoogle Scholar
  19. 19.
    Jackson, R. J. and Standart, N. (1990) Do the poly(A) tall and 3′ untranslated region control mRNA translation?. Cell. 62, 15–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Proudfoot, N. J. (1991) Poly(A) signals. Cell. 64, 671–674.PubMedCrossRefGoogle Scholar
  21. 21.
    Carswell, S. and Alwine, J. C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site effects of upstream sequences. Mol. Cell. Biol. 9, 4248–4258.PubMedGoogle Scholar
  22. 22.
    Pfarr, D. S., Rieser, L. A., Woychik, R. P., Rottman, F. M., Rosenberg, M., and Reff, M. E. (1986) Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5, 115–122.PubMedCrossRefGoogle Scholar
  23. 23.
    Araki, E., Shimada, F., Shichiri, M., Mori, M., and Ebina, Y. (1988) pSV00CAT Low background CAT plasmid. Nucleic Acids Res. 16, 1627–1630.PubMedCrossRefGoogle Scholar
  24. 24.
    Gross, M. K., Kainz, M. S., and Merrill, G. F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L. cells. Mol. Cell. Biol. 7, 4576–4581.PubMedGoogle Scholar
  25. 25.
    Buchman, A. R. and Berg, P. (1988) Comparison of intron-dependent and intron-independent gene expression. Mol. Cell. Biol. 8, 4395–4405.PubMedGoogle Scholar
  26. 26.
    Evans, M. J. and Scarpulla, R. C. (1989) Introns in the 3′-untranslated region can inhibit chimeric CAT and β-galactosidase gene expression. Gene 84, 135–142.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang, M. T. F. and Gorman, C. M. (1990) Intervening sequences increase the efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18, 937–947.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang, M. T. F. and Gorman, C. M. (1990) The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell. Biol. 10, 1805–1810.PubMedGoogle Scholar
  29. 29.
    Brondyk, B. (1995) pCI and pSI mammalian expression vectors. Promega Notes 49, 7–11.Google Scholar
  30. 30.
    Brinster, R. L., Allen, J. M., Behringer, R. R., Gelinas, R. E., and Palmiter, R. D. (1988) Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840.PubMedCrossRefGoogle Scholar
  31. 31.
    Choi, T., Huang, M., Gorman, C., and Jaenisch, R. A. (1991) generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11, 3070–3074.PubMedGoogle Scholar
  32. 32.
    Palmiter, R. D., Sandgren, E. P., Avarbock, M. R., Allen, D. D., and Brinster, R. L. (1991) Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88, 478–482.PubMedCrossRefGoogle Scholar
  33. 33.
    Dahler, A., Wade, R. P., Muscat, G. E. O., and Waters, M. J. (1994) Expression vectors encoding human growth hormone (hGH) controlled by human muscle-specific promoters prospects for regulated production of hGH delivered by myoblast transfer or intravenous injection. Gene. 145, 305–310.PubMedCrossRefGoogle Scholar
  34. 34.
    Wegner, R. H., Moreau, H., and Nedsen, P. J. (1994) A comparison of different promoter, enhancer, and cell type combinations in transient transfections. Anal. Biochem. 221, 416–418.CrossRefGoogle Scholar
  35. 35.
    Koken, S. E., van Wamel, J., and Berkhout, B. (1994) A sensitivie promoter assay based on the transcriptional activator Tat of the HIV-1 virus. Gene. 144, 243–247.PubMedCrossRefGoogle Scholar
  36. 36.
    Himmler, A., Stratowa C., Czernilofsky, A. P. (1993) Functional testing of human dopamine D1 and D5 receptors expressed in stable cAMP-responsive luciferase reporter cell lines. J. Recept. Res. 13, 79–94.PubMedGoogle Scholar
  37. 37.
    Mehtali, M., Munschy, M., Ali-Hadji, D., and Kieny, M. D. (1992) A novel transgenic mouse model for the in vivo evaluation of anti-human immunodeficiency virus type1 drugs. AIDS-Res. Hum. Retroviruses 8, 1959–1965.PubMedCrossRefGoogle Scholar
  38. 38.
    Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.PubMedCrossRefGoogle Scholar
  39. 39.
    Fields, S. and Song, O. (1989) A novel genetic systme to detect protein-protein interactions. Nature 340, 245–246.PubMedCrossRefGoogle Scholar
  40. 40.
    Fearon, E. R., Finkel, T., Gillison, M. L., Kennedy, S. P., Casella, J. F., Tomaselli, G. F., Morrow, J. S., and Van-Dang, C. (1992) Karyoplasmic interaction selection strategy a general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl. Acad. Sci. USA 89, 7958–7962.PubMedCrossRefGoogle Scholar
  41. 41.
    Hollon, T. and Yoshimura, F. K. (1989) Variation in enzymatic transient gene expression assays. Anal. Biochem. 182, 411–418.PubMedCrossRefGoogle Scholar
  42. 42.
    Lopata, M. A., Cleveland, D. W., and Sollner-Webb, B. (1984) High level transient expression of a chloramphenicol gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 12, 5707–5717.PubMedCrossRefGoogle Scholar
  43. 43.
    Mittal, S. K., McDermott, M. R., Johnson, D. C., Prevec, L. and Graham, F. L. (1993) Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter. Virus Res. 28, 67–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen, B. K., Saksela, K., Andino, R., and Baltimore, D. (1994) Distinct modes of human immunodeficiency virus type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant lucirease-encoding viruses. J. Virol. 68, 654–660.PubMedGoogle Scholar
  45. 45.
    Martin, M. E., Nicholas, J., Thompson, B. J., Newman, C., and Honess, R. W. (1991) Identification of a transactivating function mapping to the putative immediate-early locus of human herpesvirus 6. J. Virol. 65, 5381–5390.PubMedGoogle Scholar
  46. 46.
    Stabell, E. C., Rourke, S. R., Starch, G. A., and Olivo, P. D. (1993) Evaluation of a genetically engineered cell line and a histochemical beta-galactosidase assay to detect simplex virus in clinical specifimens. J. Clin. Microbiol. 31, 2796–2798.PubMedGoogle Scholar
  47. 47.
    Herzing, L. B. K. and Meyn, M. S. (1993) Novel lacZ-based recombination vectors for mammalian cells. Gene. 137, 163–169.PubMedCrossRefGoogle Scholar
  48. 48.
    Vile, R. G. and Hart, I. R. (1993) In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res. 53, 962–967.PubMedGoogle Scholar
  49. 49.
    Huang, M. T. F. and Gorman, C. M. (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18 937–947.PubMedCrossRefGoogle Scholar
  50. 50.
    Medema, R. H., de Laat, W. L., Martin, G. A., McCormick, F., and Bos, J. L. (1992) GTPase-activation protein SH2-SH3 domains induce gene expression in a Ras-dependent fashion. Mol. Cell. Biol. 12, 3425–3430.PubMedGoogle Scholar
  51. 51.
    Sakoda, T., Kaibuchi, K., Kishi, K., Kishida, S., Doi, K., Hoshino, M., Hattori, S., and Takai, Y. (1992) smg/rap/Krev-1 p21s inhibit the signal pathway to the c-fos promoter/enhancer from c-Ki ras p21 but not from c-far-1 kinase in NIH3T3 cells. Oncogene 7, 1705–1711.PubMedGoogle Scholar
  52. 52.
    Morales, M. J. and Gottlieb, D. I. (1993) A polymerase chain reaction-based method for detection and quantitation of reporter gene expression in transient transfection assays. Anal. Biochem. 210, 188–194.PubMedCrossRefGoogle Scholar
  53. 53.
    Alton, N. K. and Vapnek, D. (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282, 864–869.PubMedCrossRefGoogle Scholar
  54. 54.
    Leslie, A. G. W., Moody, P. C. E., and Shaw, W. V. (1988) Structure of chloramphenicol acetyltransferase at 1.75A. resolution. Proc. Nat. Acad. Sci. USA 85, 4133–4137.PubMedCrossRefGoogle Scholar
  55. 55.
    Thompson, J. F., Hayes, L. S., and Lloyd, D. B. (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene. 103, 171–177.PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw, W. V. (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 43, 737–755.PubMedCrossRefGoogle Scholar
  57. 57.
    Seed, B. and Sheen, J.-Y. (1988) A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 67, 271–277.PubMedCrossRefGoogle Scholar
  58. 58.
    Neumann, J. R., Morency, C. A., and Russian, K. O. (1987) A novel rapid assay for chloramphenicol acetyltransferase gene expression. BioTechniques 5, 444–447.Google Scholar
  59. 59.
    Hruby, D. E., Brinkley, J. M., Kang, H. C., Haugland, R. P., Young, S. L., and Melnor, M. H. (1990) Use of a fluorescent chloramphenicol derivative as a substrate for CAT assays. BioTechniques 8, 170–171.PubMedGoogle Scholar
  60. 60.
    DeWet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 7870–7873.CrossRefGoogle Scholar
  61. 61.
    DeWet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene. Structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.Google Scholar
  62. 62.
    Bronstein, I., Fortin, J., Stanley, P. E., Stewart, G. S. A. B., and Kricka, L. J. (1994) Chemiluminiscent and bioluminescent reporter gene assays. Anal. Biochem. 219, 169–181.PubMedCrossRefGoogle Scholar
  63. 63.
    Pazzagli, M., Devine, J. H., Peterson, D. O., and Baldwin, T. O. (1992) Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal. Biochem. 204, 315–323.PubMedCrossRefGoogle Scholar
  64. 64.
    Wood, K. V. (1991) in Bioluminescence and Chemiluminescence: Current Status. (Stanley, P. E. and Kricka, L. J., eds.), Wiley, Chichester, pp. 11–14.Google Scholar
  65. 65.
    Langridge, W., Escher, A., Wang, G., Ayre, B., Fodor, I., and Szalay, A. (1994) Low-light image analysis of transgenic organisms using bacterial luciferase as a marker. J. Biolumin Chemilumin. 9, 185–200.PubMedCrossRefGoogle Scholar
  66. 66.
    Craig, F. F., Simmonds, A. C., Watmore, D., McCapra, F., and White, M. R. H. (1992) Membrane-permeable luciferin esters for assay of firefly luciferase in live intact cells. Biochem. J. 276, 637–641.Google Scholar
  67. 67.
    Hall, C. V., Jacob, P. E., Ringold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Molec. Applied Gen. 2, 101–109.Google Scholar
  68. 68.
    Marsh, J. (1994) Kinetic determination of cellular LacZ expression. Genet. Anal. Tech. Appl. 11, 20–23.PubMedGoogle Scholar
  69. 69.
    Eustice, D. C., Feldman, P. A., Colberg-Poley, A. M., Buckery, R. M., and Neubauer, R. H. (1991) A sensitive method for the detection of β-galactosidase in transfected mammalian cells. BioTechniques 11, 739–742.PubMedGoogle Scholar
  70. 70.
    Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Nat. Acad. Sci. USA 84, 156–160.PubMedCrossRefGoogle Scholar
  71. 71.
    Krasnow, M. A., Cumberledge, S., Manning, G., Herzenberg, L. A., and Nolan, G. P. (1991) Whole animal cell sorting of Drosophila embryos. Science 251, 81–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Jain, V. K. and Magrath, I. T. (1991) A chemiluminescent assay for quantitation of β-galactosidase in the femtogram range: application to quantitation of β-galactosidase in lacZ-transfected cells. Anal. Biochem. 199, 119–124.PubMedCrossRefGoogle Scholar
  73. 73.
    Sanes, J. R., Rubenstein, J. L. R., and Nicolas, J.-F (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142.PubMedGoogle Scholar
  74. 74.
    Lim, K. and Chae, C. B. (1989) A sample assay for DNA transfection by incubation of the cells in culture dashes with substrates for beta-galactosidase. BioTechniques 7, 576–579.PubMedCrossRefGoogle Scholar
  75. 75.
    Young, D. C., Kingsley, S. D., Ryan, K. A., and Dutko, F. J. (1993) Selective inactivation of eukaryotic β-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial β-galactosidase as a reporter enzyme. Anal. Biochem. 215, 24–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Gallagher, S. R. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression Academic Press, San Diego, CA.Google Scholar
  77. 77.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  78. 78.
    Paigen, K. (1989) Mammalian beta-glucuronidase, genetics, molecular biology, and cell biology. Prog. Nucleic Acid. Res. Mol. Biol. 37, 155–205.PubMedCrossRefGoogle Scholar
  79. 79.
    Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M., and Moore, D. D. (1986) Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6, 3173–3179.PubMedGoogle Scholar
  80. 80.
    Henthorn, P., Zervos, P., Raducha, M., Harris, H., and Kadesch, T. (1988) Expression of a human placental alkaline phosphatase gene in transfected cells, use as a reporter for studies of gene expression. Proc. Natl. Acad. Sci. USA 85, 6342–6346.PubMedCrossRefGoogle Scholar
  81. 81.
    Yoon, K., Thiede, M. A., and Rodan, G. A. (1988) Alkaline phosphatase as a reporter enzyme. Gene 66, 11–17.PubMedCrossRefGoogle Scholar
  82. 82.
    Harbron, S., Eggelte, H. J., Fisher, M., and Rabin, B. R. (1992) Amplified assay of alkaline phosphatase using flavin-adenine dinucleotide phosphate as substrate. Anal. Biochem. 206, 119–124.PubMedCrossRefGoogle Scholar
  83. 83.
    Miska, W. and Geiger, R. (1987) Synthesis and characterization of luciferin derivatives for use in bioluminescence enhanced enzyme immunoassays. J. Clin. Chem. Clin. Biochem. 25, 23–30.PubMedGoogle Scholar
  84. 84.
    Shaap, A. P., Akhavan, H., and Romano, L. J. (1989) Chemiluminescent substrates for alkaline phosphatase application to ultrasensitive enzyme-linked immunoassays and DNA probes. Clin. Chem. 35, 1863–1864.Google Scholar
  85. 85.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Mormier, M. J. (1992) Primary structure of the Aequorea victoria green fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  86. 86.
    Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., and Ward, W. (1993) Chemical structure of the hexapeptide chromophore of the aequorea green-fluorescent protein. Biochemistry 32, 1212–1218.PubMedCrossRefGoogle Scholar
  87. 87.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fuorescent protein as a marker for gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang, S. and Hazelrigg, T. (1994) Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400–403.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1997

Authors and Affiliations

  • Debyra Groskreutz
    • 1
  • Elaine T. Schenborn
    • 1
  1. 1.Promega Corp.Oregon

Personalised recommendations