Skip to main content

Analysis of Heterologous Gene Expression in Xenopus Blastomeres

  • Protocol
  • 1551 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

Abstract

Like Xenopus oocytes, Xenopus cleavage blastomeres are ideal synthetic factories for the expression of heterologous gene products. For 6 h after fertilization, the embryos are transcriptionally quiescent (1), but mRNA is recruited for translation at a rate greater than in the oocyte, and the protein products of exogenous mRNA and DNA, introduced by microinjection, are synthesized as efficiently as those of endogenous RNA (2). This is an excellent system in which to examine the developmental function of heterologous genes, because one can express genes during developmentally inappropriate stages and in developmentally inappropriate regions. For example, to test whether a gene is involved in dorsal axis formation, researchers express the gene in a blastomere that produces ventral tissues and assay whether the blastomere’s fate changes to a dorsal one (3–(6). Spatial misexpression is possible in Xenopus because.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos. I Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686.

    Article  PubMed  CAS  Google Scholar 

  2. Hausen, P. and Riebesell, M. (1991) The Early Development of xenopus laevis. Springer-Verlag, New York, p. 24.

    Google Scholar 

  3. Thompsen, G., Woolf, T., Whitman, M., Sokol, S., Vaughan, J., Vale, W., and Melton, D. A. (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493.

    Article  Google Scholar 

  4. Cho, K. W. Y., Blumberg, B., Steinbesser, H., and De Robertis, E. M. (1991) Molecular nature of Spemann’s Organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, W. C. and Harland, R. M. (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840.

    Article  PubMed  CAS  Google Scholar 

  6. Hainski, A. M. and Moody, S. A. (1992) Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos. Development 116, 347–355.

    PubMed  CAS  Google Scholar 

  7. Klein, S. L. (1987) The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos. Dev. Biol. 120, 299–304.

    Article  PubMed  CAS  Google Scholar 

  8. Moody, S. A. (1987) Fates of the blastomeres of the 16-cell stage xenopus embryo. Dev. Biol. 119, 560–578.

    Article  PubMed  CAS  Google Scholar 

  9. Moody, S. A. (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev. Biol. 122, 300–319.

    Article  PubMed  CAS  Google Scholar 

  10. Moody, S. A. and Kline, M. J. (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat. Embryol. 182, 347–362.

    Article  PubMed  CAS  Google Scholar 

  11. Dale, L. and Slack, J. M. W. (1987) Fate map for the 32 cell stage of Xenopus laevis. Development 99, 197–210.

    Google Scholar 

  12. Batin, S., Moody, S. A., and Knox, B. E. (1994) Xenopus rhodopsin promoter characterization by transient embryo transfection. Mol. Biol. Cell 5, 110a.

    Google Scholar 

  13. Sargent, T. D. and Mathers, P. H. (1991) Analysis of Class II gene regulation. Methods Cell Biol. 36, 347–365.

    Article  PubMed  CAS  Google Scholar 

  14. Etheridge, A. L. and Richter, S. M. A. (1978) Xenopus laevis. Rearing and Breeding the African Clawed Frog Nasco, Ft Atkinson, WI.

    Google Scholar 

  15. Heasman, J., Holwill, S., and Wylie, C. C. (1991) Fertilization of cultured Xenopus oocytes and use in studies of maternally inherited molecules. Methods Cell Biol. 36, 213–230.

    Article  PubMed  CAS  Google Scholar 

  16. Nieuwkoop, P. D. and Faber, J. (1994) Normal Table of Xenopus Laevis (Daudin) Garland, New York.

    Google Scholar 

  17. Kay, B. K. (1991) Injections of oocytes and embryos. Methods Cell Biol. 36, 663–669.

    Article  PubMed  CAS  Google Scholar 

  18. Wu, M. and Gerhart, J. (1991) Raising Xenopus in the laboratory. Methods Cell Biol. 36, 3–18.

    Article  PubMed  CAS  Google Scholar 

  19. Masho, R. (1990) Close correlation between the first cleavage plane and the body axis in early Xenopus embryos. Dev. Growth Diff. 32, 57–64.

    Article  Google Scholar 

  20. Peng, H. B. (1991) Solutions and protocols. Methods Cell Biol. 36, 657–662.

    Article  PubMed  CAS  Google Scholar 

  21. Moody, S. A., Bauer, D. V., Hainski, A. M., and Huang, S. (1995) Determination of Xenopus cell lineage by maternal factors and cell interactions, in Current Topics in Development, vol. 32 (Pedersen, R. and Schatten, G., eds.), Academic, New York, pp. 103–138.

    Google Scholar 

  22. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  23. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  24. Wormington, M. (1991) Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes. Methods Cell Biol. 36, 167–183.

    Article  PubMed  CAS  Google Scholar 

  25. Vize, P. D., Melton, D. A., Hemmati-Brivanlou, A., and Harland, R. M. (1991) Assays for gene function in developing Xenopus embryos. Methods Cell Biol. 36, 367–387.

    Article  PubMed  CAS  Google Scholar 

  26. Klymkowsky, M. W. and Hanken, J. (1991) Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol. 36, 420–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Moody, S.A. (1997). Analysis of Heterologous Gene Expression in Xenopus Blastomeres. In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:271

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:271

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics