Inducible Expression Cassettes in Yeast: GAL4

  • Lawrence M. Mylin
  • James E. Hopper
Part of the Methods in Molecular Biology book series (MIMB, volume 62)


The yeast Saccharomyces cerevisiae can be grown in the laboratory with ease and at relatively low expense, and can be propagated in large scale fermentation cultures when preparation of larger amounts of a recombinant protein is desired. The S. cerevisiae genome can be manipulated to reduce proteolysis or prevent unwanted posttranslational processing of recombinant proteins (1,2). Genes that control protein degradation and glycosylation have been identified, and mutants are available for constructing genetic backgrounds appropriate for overcoming problems specific to expression of the recombinant protein of choice (3, 4, 5). The availability of such mutations combined with the ability to introduce and express foreign genes, isolate temperature sensitive mutants, or alter nonessential genes by targeted disruption makes the yeast Saccharomyces cerevisiae an attractive host for the production of heterologous recombinant proteins.


Recombinant Protein Yeast Cell Synthetic Medium Starter Culture Microfuge Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gardell, S. J., Hare, T. R., Han, H., Markus, H. Z., Keech, B. J., Catty, C. E., Ellis, R. W., and Schultz, L. D. (1990) Purification and characterization of human plasminogen activator inhibitor type I expressed in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 278, 467–474.PubMedCrossRefGoogle Scholar
  2. 2.
    Schultz, L. D., Markus, H. Z., Hoffman, K. H., Montgomery, D. L., Dunwiddie, C. T., Kniskern, P. J., Freedman, R. B., Ellis, R. W., and Tuite, M. F. (1994) Using molecular genetics to improve the production of recombinant proteins by the yeast Saccharomyces cerevisiae. Ann. New York Acad. Sci. 721, 148–157.CrossRefGoogle Scholar
  3. 3.
    Ballou, C. E. (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with conditional protein glycosylation defects. Methods Enzymol. 185, 440–470.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones, E. W. (1991) Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 266, 7963–7966.PubMedGoogle Scholar
  5. 5.
    Jones, E. W. (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194, 428–453.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnston, M. and Carlson, M., Regulation of carbon and phosphate utilization, in The Molecular and Cellular Biology of the Yeast Saccharomyces Gene Expression (1992) (Jones, E. W., Pringle, J. R., and Broach, J. R., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 193–282.Google Scholar
  7. 7.
    Johnston, M. (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51, 458–476.PubMedGoogle Scholar
  8. 8.
    West, R. W., Yocum, R. R., and Ptashne, M. (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent region location and function of the upstream activating sequence UASg. Mol. Cell Biol. 4, 2467–2478.PubMedGoogle Scholar
  9. 9.
    Bram, R. J. and Kornberg, R. D. (1985) Specific binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82, 43–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Giniger, E., Varnum, S. M., and Ptashne, M. (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40, 767–774.PubMedCrossRefGoogle Scholar
  11. 11.
    Lohr, D. and Hopper, J. E. (1985) The relationship of regulatory proteins and DNase I hypersensitive sites in the yeast GAL1-10 genes. Nucleic Acids Res. 13, 8409–8423.PubMedCrossRefGoogle Scholar
  12. 12.
    Bram, R. J., Lue, N. F., and Kornberg, R. D. (1986) A family of upstream activating sequences in yeast roles both in induction and repression of transcription. EMBO J. 5, 603–608.PubMedGoogle Scholar
  13. 13.
    Selleck, S. B. and Majors, J. E. (1987) In vivo DNA-binding properties of a yeast transcription activator protein. Mol. Cell. Biol. 7, 3260–3267.PubMedGoogle Scholar
  14. 14.
    Bajwa, W., Torchia, T. E., and Hopper, J. E. (1988) Yeast regulatory gene GAL 3, carbon regulation; UASgal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1, encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell Biol. 8, 3439–3447.PubMedGoogle Scholar
  15. 15.
    Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523.PubMedCrossRefGoogle Scholar
  16. 16.
    Torchia, T. E., Hamilton, R. W., Cano, C. L., and Hopper, J. E. (1984) Disruption of the regulatory gene GAL80 in Saccharomyces cerevisiae effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol. Cell. Biol. 4, 1521–1527.PubMedGoogle Scholar
  17. 17.
    Ma, J. and Ptashne, M. (1987) The carboxyl 30 amino acids of GAL4 are recognized by GAL80. Cell 50, 113–119.CrossRefGoogle Scholar
  18. 18.
    Lue, N. F., Chasman, D. I., Buchman, A. R., and Kornberg, R. D. (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell Biol. 7, 344–451.Google Scholar
  19. 19.
    Johnston, S. A., and Hopper, J. E. (1982) Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA. 79, 6971–6975.PubMedCrossRefGoogle Scholar
  20. 20.
    Winge, O. and Roberts, C. (1948) Inheritance of enzymatic characters in yeast and the phenomenon of long-term adaptation. C. R. Trav. Lab. Carsberg. Ser. Physiol. 24, 264–315.Google Scholar
  21. 21.
    Torchia, T. E., and Hopper, J. E. (1986) Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics 113, 229–246.PubMedGoogle Scholar
  22. 22.
    Carlson, M. (1987) Regulation of sugar utilization in Saccharomyces species. J. Bacteriol. 169, 4873–4877.PubMedGoogle Scholar
  23. 23.
    Gancedo, J. M. (1992) Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297–313.PubMedCrossRefGoogle Scholar
  24. 24.
    Entian, K.-D., and Barnett, J. A. (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 17, 506–510.PubMedCrossRefGoogle Scholar
  25. 25.
    Trumbly, R. J. (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Mirobiol. 6, 15–21.CrossRefGoogle Scholar
  26. 26.
    Adams, B. (1972) Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J. Bacteriol. 111, 308–315.PubMedGoogle Scholar
  27. 27.
    Baker, S. M., Johnston, S. A., Hopper, J. E., and Jaehning, J. A. (1987) Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GAL4. Mol. Gen. Genet. 208, 127–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnston, S. A., Zavortnik, M. I., Debouck, C., and Hopper, J. E. (1986) Functional domains of the yeast regulatory protein GAL4. Proc. Natl. Acad. Sci. USA 83, 6553–6557.PubMedCrossRefGoogle Scholar
  29. 29.
    Schultz, L. D., Hoffman, K. J., Mylin, L. M., Montgomery, D. L., Ellis, R. W., and Hopper, J. E. (1987) Regulated overproducton of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multicopy expression vectors in yeast. Gene 61, 123–133.PubMedCrossRefGoogle Scholar
  30. 30.
    Mylin, L. M., Bhat, J. P., and Hopper, J. E. (1989) Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 3, 1157–1165.PubMedCrossRefGoogle Scholar
  31. 31.
    Mylin, L M., Hoffman, K. H., Schultz, L. D., and Hopper, J. E. (1990) A regulated GAL4 expression cassette providing controllable and high output from high copy galactose promoters in yeast. Methods Enzymol. 185, 297–308.PubMedCrossRefGoogle Scholar
  32. 32.
    Hopper, J. E., Broach, J. R., and Rowe, L. B. (1978) Regulation of the galactose pathway in Saccharomyces cerevisiae induction of uridyl transferrase mRNA and dependency on GAL4 gene function. Proc. Natl. Acad. Sci. USA 75, 2878–2882.PubMedCrossRefGoogle Scholar
  33. 33.
    Guthrie, C. and Fink, G. (1991) Guide to yeast genetics and molecular biology, in Methods in Enzymology, vol. 194 (Abelson, J. N. and Simon, M., eds.), Academic, San Diego, CA.Google Scholar
  34. 34.
    Rothstein, R. (1983) One step gene disruption in yeast. Methods Enzymol. 101, 202–211.PubMedCrossRefGoogle Scholar
  35. 35.
    Schneider, J. C. and Guarente, L. (1991) Vectors for expression of cloned genes in yeast. regulation, overproduction, and underproduction. Methods Enzymol. 194, 373–388.PubMedCrossRefGoogle Scholar
  36. 36.
    Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foriegn gene expression in yeast a review. Yeast 8, 423–488.PubMedCrossRefGoogle Scholar
  37. 37.
    Mithcell, D. A., Marshall, T. K., and Deschenes, R. J. (1993) Vectors for the inducible overexpression of glutathione S-transferrase fusion proteins in yeast. Yeast 9, 715–723.CrossRefGoogle Scholar
  38. 38.
    Foreman, P. K. and Davis, R. W. (1994) Cloning vectors for the synthesis of epitope-tagged, truncated and chimeric proteins in Saccharomyces cerevisiae. Gene 144, 63–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Saiki, R. K., Gefland, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.PubMedCrossRefGoogle Scholar
  40. 40.
    Toh-E. A., Ueda, Y., Kakimoto, S., and Oshima, Y. (1973) Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J. Bacteriol. 113, 277–287.Google Scholar
  41. 41.
    Bostian, K. A., Lemire, J. M., Cannon, L. E., and Halverson, H. O. (1980) In vitro synthesis of repressible yeast acid phosphatase identification of multiple mRNAs and products. Proc. Natl. Acad. Sci. USA 77, 4504–4508.PubMedCrossRefGoogle Scholar
  42. 42.
    Ito, H., Fukudua, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168.PubMedGoogle Scholar
  43. 43.
    Schiestl, R. H. and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346.PubMedCrossRefGoogle Scholar
  44. 44.
    Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen, D. C., Yang, B. C., and Kuo, T. T. (1992) One-step transformation of yeast in stationary phase. Curr. Genet. 21, 83–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Hinnen, A., Hicks, J. B., and Fink, G. R. (1978) Transformation of yeast. Proc. Natl. Acad. Sci. USA 75, 1929–1933.PubMedCrossRefGoogle Scholar
  47. 47.
    Becker, D. M. and Guarente, L. (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194, 182–187.PubMedCrossRefGoogle Scholar
  48. 48.
    Manivasakam, P., and Schiestl, R. H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res. 21, 4414–4415.PubMedCrossRefGoogle Scholar
  49. 49.
    Tshopp, J. F., Emr, S. D., Field, C., and Scheckman, R. (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J. Bacteriol. 166, 313–318.Google Scholar
  50. 50.
    Szkutnicka, K., Tschopp, J. F., Andrews, L., and Cirillo, V. P. (1989) Sequence and structure of the yeast galactose transporter. J. Bacteriol. 171, 4486–4493.PubMedGoogle Scholar
  51. 51.
    Long, R. M., Mylin, L. M., and Hopper, J. E. (1991) GAL 11 (SPT13), a transcriptional regulator of diverse yeast genes, affects the phosphorylation state of GAL4, a highly specific transcriptional activator. Mol. Cell Biol. 11, 2311–2314.PubMedGoogle Scholar
  52. 52.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  53. 53.
    Aris, J. P. and Blobel, G. (1991) Isolation of yeast nuclei. Methods Enzymol. 194, 735–749.PubMedCrossRefGoogle Scholar
  54. 54.
    Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al., which is more generally applicable. Anal. Biochem. 83, 346–356.PubMedCrossRefGoogle Scholar
  55. 55.
    Mylin, L. M., Johnston, M., and Hopper, J. E. (1990) Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Mol. Cell Biol. 10, 4623–4629.PubMedGoogle Scholar
  56. 56.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Cloning A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  57. 57.
    Jaswmski, S. M. (1990) Preparation of extracts from yeast. Methods Enzymol. 182, 154–174.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Lawrence M. Mylin
    • 1
  • James E. Hopper
    • 1
  1. 1.Department of Microbiology and ImmunologyThe Pennsylvania State University College of MedicineHershey

Personalised recommendations