Skip to main content

Recombinant Antigens in Viral Diagnosis

  • Protocol
Book cover Diagnostic Virology Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 12))

  • 571 Accesses

Abstract

Traditionally, the accurate detection of viruses and the diagnosis of viral diseases has been difficult and expensive as viruses cannot be visualized by conventional light microscopy and need propagation in primary or continuous cell culture. The advent and increasing sophistication of electron microscopy (EM) has greatly facilitated the detection of those viruses with a defined and robust structures, e g., adenoviruses, polioviruses, rotaviruses and, more recently, Norwalk virus and “Norwalk-like agents” (1). Diagnosis of diseases caused by other viruses, especially enveloped viruses such as influenza virus, measles virus, and yellow fever virus, has depended almost entirely on the detection of antibodies in sera, saliva, or cerebrospinal fluid (CSF). Initially, serological assays depended on detecting antibodies that inhibited biological functions of the virus, and such assays included plaque reduction neutralization tests (PRNT), hemagglutinin inhibition assays (HI), and complement fixation (CF) assays (2). Although these assays can be specific and reliable in the hands of an experienced laboratory worker, they suffer from several significant disadvantages. HI and CF assays are frequently very specific, but are relatively insensitive, and require the preparation and at least partial purification of large amounts of viral antigen. Furthermore, these assays will not differentiate between recent and past infections. Because antigen production is nearly always dependent on virus growth in tissue culture, it can be expensive, laborious, and, in the case of human pathogens like yellow fever virus and rabies virus, potentially dangerous, requiring sophisticated containment facilities. Moreover, all these procedures require well-trained and competent technical experts to ensure the safe and reliable supply of high-quality reagents. PRNTs have significant advantages over other traditional tests in that they can be very sensitive and specific and do not require the preparation and purification of large amounts of antigen. They do, however, suffer from all the drawbacks of any tissue culture-based system and in addition necessitate the handling of live virus and live cells under sterile conditions throughout the assay procedure. These assays are very slow, requiring anything from 2 d to 3 wk to complete. In recent years the adaptability of laboratory assays to automation has been of increasing importance leading to the decreasing popularity of biological assays which are very difficult and expensive to automate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flewett, T. H., Davies, H., Bryden, A. S., and Robertson, M. T. (1974) Diagnostic electron microscopy of the faeces II: acute gastroenteritis associated with reovirus-like particles J. Clin Pathol 27,608–614.

    Article  PubMed  CAS  Google Scholar 

  2. Timbury, M. C. (1986) Notes on Medical Virology (8th ed.) Churchill-Livingston Medical Texts, London.

    Google Scholar 

  3. Kalica, A. R., Purcell, R. H., Serona, M. M., Wyatt, R. G, Kim, H W, Chanock, R. M., and Kapikian, A. Z (1977) A microtiter solid phase radioimmunoassay for detection of the human reovirus-like agent in stools J. Infect 118, 1275–1279.

    CAS  Google Scholar 

  4. Yolken, R H, Wyatt, R G, and Kapikian, A. Z. (1977) ELISA for rotavirus. Lancet 2, 819.

    Article  PubMed  CAS  Google Scholar 

  5. Haikala, O. J., Kokkonen, J. O., Leinonen, M. K, Nuruni, T., Mantyjarvi, R., and Sakkinen, H K. (1983) Rapid detection of rotavirus in stools by latex agglutination comparison with radioimmunoassay and electron microscopy and clinical evaluation of the test. J. Med Virol 11, 91–97.

    Article  PubMed  CAS  Google Scholar 

  6. Milich, D. R. (1989) Synthetic T and B cell recognitton sites; implications for vaccine development Adv Immunol 45, 195–264.

    Article  PubMed  CAS  Google Scholar 

  7. Spouge, J., Guy, H., Cornette, J., Margalit, H., Cease, K., Berzofshy, J., and DeLisi, C. (1987) Strong conformational propensities enhance T cell antigenicity. J. Immunol. 138, 204–212.

    PubMed  CAS  Google Scholar 

  8. Markowitz, M. E., Preblud, S. R., Orenstein, W. A., Rovira, E. Z., Stat, M., Adams, N. C., Hawkins, B A., and Hinman, A.R. (1989) Patterns of transmission in measles outbreaks in the United States. New Engl. J. Med. 320, 75–81.

    Article  PubMed  CAS  Google Scholar 

  9. Gordon-Smith, C. E (1956) A virus resembling Russian spring-summer encephalitis from an ixodid tick in Malaya. Nature 178, 581–583.

    Article  Google Scholar 

  10. Lofdahl, S., Guss, B., Uhlen, M., Philipson, L., and Lindberg, M. (1983) Gene for Staphylococcal protein A. Proc Natl. Acad. Sci. USA 80, 697–701.

    Article  PubMed  CAS  Google Scholar 

  11. Warnes, A., Fooks, A. R., and Stephenson, J. R (1994) Production of measles nucleoprotein in different expression systems and its use as a diagnostic reagent. J. Virolog. Methods 49,257–268.

    Article  CAS  Google Scholar 

  12. Amman, E., Ochs, B, and Abel, K-J. (1988) Tightly regulated tac promoter vectors for the expression of unfused and fused proteins in Escherichia coli. Gene 62,301–315.

    Google Scholar 

  13. Warnes, A, Fooks, A R, Dowsett, A B., Wilkinson, G W. G, and Stephenson, J. R. (1995) Expression of measles virus nucleoprotein in E. coli and assembly of nucleocapsid-like structures Gene 160, 173–178.

    Article  PubMed  CAS  Google Scholar 

  14. Studier, F. W., Rosenberg, A H., Dunn, J J, and Dubendorff, J W (1990) Use of T7 RNA polymerase to direct expression of cloned genes Methods Enzymol 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  15. di Guan, C., Li, P, Riggs, P. D, and Inouye, H. (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to a maltose-binding protein. Gene 67, 21–30.

    Article  PubMed  Google Scholar 

  16. Arnold, F. H. and Haymore, B. L (1991) Engineered metal binding proteins, purification to protein folding. Science 252, 1796–1797.

    Article  PubMed  CAS  Google Scholar 

  17. Goldstein, M A., Takagi, M, Hashida, S, Shoseyov, O, and Segel, I H (1993) Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J. Bacteriol 175, 5762–5768.

    PubMed  CAS  Google Scholar 

  18. Takehara, K., Ireland, D., and Bishop, D. H. L. (1988) Co-expression of the hepatitis B surface and core antigens using baculovirus multiple expression vectors. J. Gen. Virol. 69, 2763–2777.

    Article  PubMed  CAS  Google Scholar 

  19. Summers, M. D. and Smith, G. E. (1987) A manual of methods for baculovirus vectors and Insect cell culture procedures. Texas Agri Exp. Station Bull No. 1555.

    Google Scholar 

  20. Prehaud, C., Harris, R. D., Fulop, V., Keh, C. L., Wong, J., Flamand, A., and Bishop, D. H. (1990) Expression, characterization, and purification of a phophorylated rabies nucleoprotein synthesized in insect cells by baculovirus vectors. Virology 178,486–497.

    Article  PubMed  CAS  Google Scholar 

  21. Fooks, A. R., Stephenson, J R., Warnes A., Dowsett, A B., Rima, B. K, and Wilkinson, G. W. G. (1993) Measles virus protein expressed in insect cells assembles into nucleocapsid-like structures. J. Gen. Virology 74, 1439–1444

    Article  CAS  Google Scholar 

  22. Chlen, D. Y., Choo, Q. L, Tabizi, A., Kuo, C., McFarland, J., Berger, K., Lee, C, Shuster, J. R., Nguyen, T., Moyer, D. L., Tong, M, Furuta, S., Omata, M., Tegtmeier, G., Alter, H, Schiff, E., Jeffers, L., Houghton, M., and Kuo, G. (1992) Diagnosis of hepatitis C virus (HCV) infection using an immunodominant chimeric polyprotein to capture circulating antibodies reevaluation of the role of HCV in liver disease. Proc Natl. Acad. Sci USA 89, 10,011–10,015.

    Article  Google Scholar 

  23. Cregg, J. M, Vedick, T S., and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11, 905–910

    Article  CAS  Google Scholar 

  24. Scorer, C. A., Clare, J. J., McCombie, W R., Ramanos, M. A, and Sreekrishna, K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high level gene expression. Bio/Technology 12, 181–184.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz, A. R., Togo, Y., and Hornick, R. B. (1974) Clinical evaluation of live, oral types 1,2 and 5 adenovirus vaccines. Am. Rev Respir. Dis. 109, 233–238.

    PubMed  CAS  Google Scholar 

  26. Graham, F. L and Prevec, L. (1991) Manipulation of adenovirus vectors, in Methods in Molecular Biology, vol. 7: Gene Transfer and Expression Protocols (Murray, E. J, ed.), Humana, Totowa, NJ, pp. 109–128.

    Chapter  Google Scholar 

  27. Jacobs, S C, Wilkinson, G. W. G, and Stephenson, J R (1992) High level expression of TBEV NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. J. Virol 66,2086–2095

    PubMed  CAS  Google Scholar 

  28. Engelhardt, J. F., Ye, X., Doranz, B, and Wilson J M. (1994) Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl. Acad Sci USA 91, 6196–200

    Article  PubMed  CAS  Google Scholar 

  29. Mackett, M., Smith, G L., and Moss, B. (1982) Vaccinia virus: a selectable eukaryotic cloning and expression system. Proc Natl. Acad. Sci USA 79, 7415–7419.

    Article  PubMed  CAS  Google Scholar 

  30. Panicali, D. and Paoletti, E. (1982) Construction of poxviruses as cloning vectors insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia Virus Proc. Natl Acad. Sci. USA 79, 4927–4931

    Article  PubMed  CAS  Google Scholar 

  31. Shchelkunov, S. N. (1995) Functional organization of variola major and vaccinia virus genomes. Virus-Genes 10, 53–71

    Article  PubMed  CAS  Google Scholar 

  32. Baxby, D. and Paoletti, E (1994) Potential use of non-replicating vectors as recombinant vaccines. Vaccine 10, 8–9.

    Article  Google Scholar 

  33. Wilkinson, G. W. G and Lowenstein, P. R. (1994) Introduction to gene transfer: viral vectors. Gene Ther 1(1), S1–S3

    PubMed  CAS  Google Scholar 

  34. Burns, J. C., Friedmann, T, Driever, W., Burrasco, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein psuedotyped retroviral vectors: concentration to a very high titre and efficient gene transfer into mammalian and non-mammalian cells Proc. Natl. Acad Sci USA 90, 8033–8037

    Article  PubMed  CAS  Google Scholar 

  35. Temin, H. M. (1990) Safety considerations in somatic gene therapy of human disease with retrovirus vectors Human Gene Ther 1, 111–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Stephenson, J.R., Warnes, A. (1998). Recombinant Antigens in Viral Diagnosis. In: Stephenson, J.R., Warnes, A. (eds) Diagnostic Virology Protocols. Methods in Molecular Medicine™, vol 12. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-479-8:315

Download citation

  • DOI: https://doi.org/10.1385/0-89603-479-8:315

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-479-2

  • Online ISBN: 978-1-59259-596-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics