Advertisement

Oligonucleotides

  • Stina Syrjänen
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 12)

Abstract

During the past 30 years, several strategies have been used to synthesize DNA. Moreover, it was not possible to utilize automated DNA synthesis until the phosphate triester method using phosphoramidite reagents was introduced (1,2). Since then, chemically synthesized oligonucleotides have been powerful tools in the molecular biologist’s repertoire. The availability of high-quality oligonucleotides of defined sequence has had a significant impact on the techniques and applicability of molecular biological methods even in routine diagnosis of infectious diseases. Currently, most institutions have access to automated DNA synthesis facilities. Oligonucleotides with or without modifications are also commercially available from several companies with a reasonable price worldwide. Oligonucleotides can be used as probes in different hybridization methods or as primers, linkers, adaptors, gene synthons, and so on.

Keywords

Amersham Pharmacia Biotech Hybridization Mixture Redistilled Water Specific Absorption Coefficient Control Pore Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Narang, S. A. (1983) DNA synthesis. Tetrahedron 39, 3–8.CrossRefGoogle Scholar
  2. 2.
    Itakura, K J. and Wallace, R.B. (1984) Synthesis and use of synthetic oligonucleotides Ann Rev Biochem 53, 323–327.PubMedCrossRefGoogle Scholar
  3. 3.
    Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W, Kohler, M, Frigitar, N., Rodriguez, H F., Stephenson, A, and Darlison, M. G (1988) Structural and functional basis-for GABAA receptor heterogeneity. Nature 335, 7679.CrossRefGoogle Scholar
  4. 4.
    Hames, B D. and Higgins, S. J. (1985) Nucleic acid hybridization, a practical approach IRL Press, Oxford-Washington.Google Scholar
  5. 5.
    Ausubel, F. M., Brent, R., Kingston, R E, Moore, D D., Seidman, J. G., Smith, J A, and Struhl, K. (1991) Synthesis and purification of oligonucleotides, in Current Protocols in Molecular Biology, vol. 1, pp. 2.11.1–2.12.4.Google Scholar
  6. 6.
    Beaucage, S. L. (1993) Oligodeoxyribonucleotide synthesis. Phosporamidite approach, in Protocols for Oligonucleotides and Analogs Methods in Molecular Biology Series, vol. 20 (Agrawal, S., ed.), Humana, Totowa, NJ, pp. 33–61.CrossRefGoogle Scholar
  7. 7.
    Froehler, B C. (1993) Oligodeoxynucleotide synthesis: Phosphonate approach, in Protocols for Oligonucleotides and Analogs Methods in Molecular Biology Serves, vol20. (Agrawal, S., ed.), Humana, Totowa, NJ, pp. 63–80.CrossRefGoogle Scholar
  8. 8.
    Agrawal, S. (1993) Protocols for Oligonucleotides and Analogs Methods in Molecular Biology Series, vol 20, Humana Press, Totowa, NJ.CrossRefGoogle Scholar
  9. 9.
    Padmapriya, A. A., Tang, J., Agrawarl, S. (1944) Large-scale synthesis, purification, and analysis of oligodeoxynucleotide phosphorothioates Antisense Res Devel. 4, 185–199.Google Scholar
  10. 10.
    Smith, M. (1983) Methods of RNA and DNA Sequencing (Wasserman, S. M, ed), Praeger Scientific.Google Scholar
  11. 11.
    Rodger, J. and Manchester, K. L. (1994) Correct measurement of oligonucleotide concentration by absorbance at 260 nm. S. Afr. J. Sci 90-91, 268.Google Scholar
  12. 12.
    Mainatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  13. 13.
    Berger, S. L. (1987) Quantifying 32P-labeled and unlabeled nucleic acids. Meth Enzym 152, 49–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1989) Short Protocols in Molecular Biology, Wiley, New York, pp. 194–202.Google Scholar
  15. 15.
    Biotechnology Catalog 1992-1993, p 73. Perkin Elmer Corporation, Norwalk, Connecticut.Google Scholar
  16. 16.
    Roychoudhury, R. and Wu, R. (1980) Terminal transferase-catalyzed addition of nucleotides to the 3′-termini of DNA, in Methods in Enzymology, vol 65 (Grossman, L. and Moldave, K., eds.), Academic Press, New York, p 43–46.Google Scholar
  17. 17.
    Nonradioactive in situ hybridization. (1992) Applzcatron Manual Chapter IV. Boehrmger Mannhelm GmbH, Biochemica, Mannheim, pp. 20–22.Google Scholar
  18. 18.
    Guitteny, A.-F., Fouque, B., Mougin, C., Teoule, R., and Bloch, B (1988) Histological detection of messenger RNAs with biotinylated synthetic oligonucleotide probes. J Histochem Cytochem. 36,563.PubMedCrossRefGoogle Scholar
  19. 19.
    Syrjanen, S. (1992) Viral gene detectiion by in situ hybridization, in Diagnostic Molecular Pathology. A Practical Approach (Herrington, C. S., McGee, O. D., eds.), Oxford University Press, Oxford, UK, pp 103–109.Google Scholar
  20. 20.
    Lathe, R. (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data. J. Mol Biol 183, 1–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Bateson, A. N. and Darlison, M. G. (1992) The design and use of oligonucleotides, in Methods in Molecular Biology. Protocols in Molecular Neurobiology, vol. 13, (Longstaff, A and Revest, P, eds.), Humana, Totowa, NJ, pp. 55–66.CrossRefGoogle Scholar
  22. 22.
    Raap, A. K, Marijnen, J. G. J, Vrolijk, J., and Van der Ploeg, M. (1986) Denaturation, renaturation, and loss of DNA during in situ hybridization procedures Cytometry 7, 235–242.PubMedCrossRefGoogle Scholar
  23. 23.
    Schildkraut, C. and Lifson, S. (1965) Dependence of the melting temperature of DNA on salt concentration Biopolymers 3, 195–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Syrjanen, S., Partanen, P., and Syrjanen, K. (1987) Comparison of the in situ DNA hybridization protocols using 35S-labeled and biotin-labeled probes in detection of HPV DNA sequences Cancer Cells 5, 323–336Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Stina Syrjänen
    • 1
  1. 1.Institute of DentistryUniversity of TurkuFinland

Personalised recommendations