Skip to main content

In Vivo Knockout of a Tissue-Specific Gene by Synthetic Ribozymes

  • Protocol
Therapeutic Applications of Ribozymes

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 11))

  • 174 Accesses

Abstract

The enzymatic activity of RNA molecules has been a source of surprises ever since 1981 when Cech discovered this new aspect of RNA function (1,2). Its role as messenger and structural component in the translational process was suddenly transcended, and it is now evident that various RNA molecules can catalyze RNA splicing, ligation and, most importantly in the present context, cleavage of nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cech, T R., Zaug, A. J., and Grabowski, P J (1981) In vivo splicing of the ribosomal RNA precursor of Tetrahymena involvement of a guanosine nucleotide in the exicion of the intervening sequence. Cell 27, 487–496.

    Article  PubMed  CAS  Google Scholar 

  2. Kruger, K, Grabowski, P. J, Zaug, A J, Sands, J, Gottschling, D. E, and Cech, T R (1982) Autoexicion and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157.

    Article  PubMed  CAS  Google Scholar 

  3. Uhlenbeck, O. C (1987) A small catalytic oligoribonucleotide Nature 328, 596–600.

    Article  PubMed  CAS  Google Scholar 

  4. Haseloff, J and Gerlach, W L (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities Nature 334, 585–591.

    Article  PubMed  CAS  Google Scholar 

  5. Cech, T R. and Uhlenbeck, O C (1994) Hammerhead nailed down. Nature 372, 39,40.

    Article  PubMed  CAS  Google Scholar 

  6. Pley, H W, Flaherty, K M, and McKay, D. B (1994) Three-dimensional structure of a hammerhead ribozyme Nature 372, 68–74

    Article  PubMed  CAS  Google Scholar 

  7. Tuschl, T, Gohlke, C, Jovin, T M, Westhof, E, and Eckstein, F (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266, 785–789

    Article  PubMed  CAS  Google Scholar 

  8. Lyngstadaas, S P., Risnes, S, Thrane, S P, and Prydz, H P. (1995) A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo EMBO J 14, 5224–5229.

    PubMed  CAS  Google Scholar 

  9. Young, R A. (1975) Biological apatite vs hydroxyapatite at the atomic level Clin Orthop 113, 249–262

    Article  PubMed  CAS  Google Scholar 

  10. Lowenstam, H.A (1981) Minerals formed by organisms. Science 211, 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  11. Moss, M L. (1964) The phylogeny of mineralized tissues. Int Rev Gen Expr Zool. 1, 297–331.

    Google Scholar 

  12. Halstead, L B. (1974) Vertebrate Hard Tissues. Wykeham, London

    Google Scholar 

  13. Fincham, A. G., Moradian-Oldak, J., Simmer, J. P., Sarte, P., Lau, E C, Diewisch, T, and Slavkin, H. C. (1994) Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J. Struct Biol 112, 103–109.

    Article  PubMed  CAS  Google Scholar 

  14. Wöltgens, J. H. M., Lyaruu, D. M., Bervoets, T J, and Bronkers, A L. (1993) Reversible and irreversible efects of temperature on amelogenesis of hamster tooth germs in vitro. Scanning Microsc 7, 1009–1016.

    PubMed  Google Scholar 

  15. Goodchild, J. and Kohli, V. (1991) Ribozymes that cleave an RNA sequence from human immunodeficiency virus:.the effect of flanking sequence on rate Arch Biochem Biophys. 284,2, 386–391.

    Article  PubMed  CAS  Google Scholar 

  16. Snead, M. L., Lau, E. C., Zelchner-David, M., Fincham, A. G., Woo, S L., and Slavkin, H. C (1985) DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochem Biophys Res. Com 129, 812–818

    Article  PubMed  CAS  Google Scholar 

  17. Paolella, G., Sproat, B S., and Lamond, A. I. (1992) Nuclease resistant ribozymes with high catalytic activity EMB0 J 11, 1913–1919.

    CAS  Google Scholar 

  18. Hertel, K J., Pardi, A, Uhlenbeck, O C., Koizumi, M, Ohtsuka, E., Uesugi, S, Cedergren, R, Eckstem, F, Gerlach, W. L., and Hodgson, R (1992) Numbering system for the hammerhead. Nucleic Acids Res 20, 3252.

    Article  PubMed  CAS  Google Scholar 

  19. Iribarren, A M, Sproat, B. S, Neuner, P., Sulston, I, Ryder, U, and Lamond, A I (1990) 2′-O-alkyl oligoribonucleotides as antisense probes. Proc Nutl Acad Sci USA 87, 7747–7751.

    Article  CAS  Google Scholar 

  20. Lamond, A I and Sproat, B S (1993) Antisense oligonucleotides made of 2′-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett 325, 123–127.

    Article  PubMed  CAS  Google Scholar 

  21. Gasparutto, D., Livache, T., Bazin, H., Duplaa, A. M, Guy, A., Khorlin, A., Molko, D., Roget, A., and Teoule, R. (1992) Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucleic Acids Res 20, 5159–5166.

    Article  PubMed  CAS  Google Scholar 

  22. Wagner, R W. (1994) Gene inhibition using antisense oligodeoxynucleotides Nature 372, 333–335.

    Article  PubMed  CAS  Google Scholar 

  23. Risnes, S (1985) Multiangular viewing of dental enamel in the SEM an apparatus for controlled mechanical specimen preparation Scand J Dent Res 93, 135–138.

    PubMed  CAS  Google Scholar 

  24. Diekwisch, T., David, S., Bringas, P., Jr., Santos, V., and Slavkin, H. C (1993) Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic molar development Development 117,2, 471–482.

    PubMed  CAS  Google Scholar 

  25. Sasaki, T, Goldberg, M, Takuma, S., and Garant, P R (1990) Cell biology of tooth enamel formation Functional election microscopic monographs Monogr Oral Sci 14, 1–199

    PubMed  CAS  Google Scholar 

  26. Suga, S. (1983) Comparative histology of the progressive mineralization pattern of developing enamel, in Mechanisms of Tooth Enamel Formation (Suga, S, ed), Quintessence, Tokyo, pp. 167–203.

    Google Scholar 

  27. Fincham, A G., Hu, Y., Lau, E. C, Slavkin, H C, and Snead, M. L (1991) Amelogenin post-secretory processing during biomineralization in the postnatal mouse molar tooth. Arch Oral Biol 36, 305–317.

    Article  PubMed  CAS  Google Scholar 

  28. Termine, J. D., Belcourt, A. B., Miyamoto, M. S, and Conn, K. M. (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I Principal molecular species in developing bovine enamel. J. Biol Chem. 225, 9760–9768.

    Google Scholar 

  29. Brooks, S J., Bonass, W A., Kirkham, J., and Robinson, C.(1994) The human C-terminal sequence is completetly homologous to the C-terminal sequence of amelogenin in all species so far studied J. Dent Res 73, 716.

    Google Scholar 

  30. Chen, E, Piddington, R., Decker, S., Park, J, Yuan, Z. A, Abrams, W R, Rosenbloom, J., Feldman, G, and Gibson, C W (1994) Regulation of amelogenin gene expression during tooth development. Dev. Dyn 199, 189–198.

    Article  PubMed  CAS  Google Scholar 

  31. Snead, M L, Luo, W, Lau, E C., and Slavkin, H C (1988) Spatial-and temporal-restricted pattern for amelogenin gene expression during mouse molar tooth organogenesis Development 104, 77–85.

    PubMed  CAS  Google Scholar 

  32. Lau, E. C., Mohandas, T. K., Shapiro, L J., Slavkin, H C., and Snead, M. L. (1989) Human and mouse amelogenin gene loci are on the sex chromosomes Genomics 4, 162–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Lyngstadaas, S.P., Sproat, B.S., Blaschke, M., Ludwig, J., Rupp, T., Prydz, H.P. (1998). In Vivo Knockout of a Tissue-Specific Gene by Synthetic Ribozymes. In: Scanlon, K.J. (eds) Therapeutic Applications of Ribozymes. Methods in Molecular Medicine™, vol 11. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-477-1:371

Download citation

  • DOI: https://doi.org/10.1385/0-89603-477-1:371

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-477-8

  • Online ISBN: 978-1-59259-595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics