Skip to main content

Folate-Polylysine-Mediated Delivery of a Multiunit Anti-BCR/ABL Ribozyme to BCR/ABL-Transformed 32D Cells

  • Protocol
Therapeutic Applications of Ribozymes

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 11))

  • 167 Accesses

Abstract

The use of oligodeoxynucleotides (ODN) to disrupt gene function has been studied in a variety of in vitro and in vivo systems (114). Antigene, antisense, ribozyme, and aptamer nucleic acid molecules have been shown in numerous model systems to effect DNA, RNA, or protein targets, or physiologic properties of cells (15). However, nucleic acid drugs must overcome several problems before wide application of these promising strategies can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neckers, L and Whitesell, S A (1993) Antinsense technology biological utility and practical considerations. Am J Physiol (Pt1), 11–12

    Google Scholar 

  2. Milligan, J F, Matteucci, M D, and Martin, J C. (1993) Current concepts in antisense drug design. J Med Chem 36, 1923–1937.

    Article  PubMed  CAS  Google Scholar 

  3. Ratajczak, M. Z, Kant, J A., Hijiya, N, Zhang, J, Luger, S. M, Zon, G., and Gerwirtz, A. M. (1992) In vivo treatment of human leukemia in a SCID mouse model with c-myb antisense oligodeoxynucleotides Proc Natl Acad Sci USA 19, 11,823–11,827.

    Article  Google Scholar 

  4. Simons, M E, Edelman, E R, DeKeyser, J. L., Langer, R., and Rosenberg, R D (1992) Anitsense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell proliferation in vivo Nature (London) 359, 67–70

    Article  CAS  Google Scholar 

  5. Kitajima, I, Shinohara T, Bilakovics, J., Brown, D A, Xu, X, and Nerenberg, M (1993) Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B Science (Washington, DC) 259, 1523

    Article  CAS  Google Scholar 

  6. Hijiya, N, Zhang, J, Ratajczak, M Z, DeRiel, K, Herlyn, M., and Gerwitz, A M. (1994) The biologic and therapeutic significance of c-myb expression in human melanoma Proc Natl Acad Sci USA 91, 4499–4503

    Article  PubMed  CAS  Google Scholar 

  7. Skorski, T., Nieborowska-skorska, M., Nicolaides, N C, Szczylik, C., Iversen, P, Iozzo, R. V., Zon, G, and Calabretta, B. (1994) Suppression of Philadelphia leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 91, 4504–4508

    Article  PubMed  CAS  Google Scholar 

  8. Bayever, E. and Iversen, P (1994) oligonucleotides in the treatment of leukemia Hematol Oncol. 12, 9–14

    Article  PubMed  CAS  Google Scholar 

  9. Luger, S. M., Ratajczak, M Z., Stadmauer, E. A., Mangan, P, Magee, D, Silberstein, L., Edelstein, M, Nowell, P., and Gewirtz, A. M. (1994) Autografting for chronic myelogenous leukemia (CML) with c-myb antisense oligodeoxynucleotide purged bone marrow: a preliminary report Blood 84(Suppl 1), 151a

    Google Scholar 

  10. Ma, D. D. F and Le Doan, T. (1994) Antisense oligonucleotides: are they the “magic bullets?” Ann. Int Med. 120, 161, 162.

    PubMed  CAS  Google Scholar 

  11. Stein, C. A. and Cohen, J S. (1988) oligonucleotides as inhibitors of gene expression: a review. Cancer Res 48, 2659–2688.

    PubMed  CAS  Google Scholar 

  12. Szczylik, C., Skorski, T, Nicoaides, N. C., Manzell, L., Malaguarnera, L, Venturelli, D., Gerwirtz, A. M., and Calabretta, B. (1991) Selective inhibition of leukemia cell proliferation BCR-ABL antisense oligodeoxynucleotides. Science 261, 562–565.

    Article  Google Scholar 

  13. Morrison, R S. (1991) Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astro-cytes J. Biol Chem. 266, 728–734.

    PubMed  CAS  Google Scholar 

  14. Gray, G. D., Hernandez, O M, Hebel, D., Root, M, Pow Sang, J M, and Wickstion, E. (1993) Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice. Cancer Res 53, 577–580

    PubMed  CAS  Google Scholar 

  15. Stull, R. A and Szoka, F. C. Jr. (1995) Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res 124, 465–483.

    Article  Google Scholar 

  16. Cotten, M (1990) The in vivo application of ribozymes Trends Biotechnol 8, 197

    Article  Google Scholar 

  17. Chang, E H and Miller, P. S. (1991), in Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS (Wickstrom, E, ed), Wiley-Liss, New York, pp 115–124

    Google Scholar 

  18. Wickstrom, E., Bacon, T. A., and Wickstrom, E L (1992) Down-regulation of c-MYC antigen expression in lymphocytes of EMU-c-myc transgenic mice treated with anti-c-myc DNA methylphosphonates Cancer Res 52, 6741–6745

    PubMed  CAS  Google Scholar 

  19. Letsinger, R. L. (1993) Control of properties of oligonucleotides by chemical modifications. Nucleic Acids Symp Ser 29, 1, 2

    PubMed  CAS  Google Scholar 

  20. Zon, G. (1993) Oligonucleoside phosphorothioates. Methods Mol Biol 20, 165–189

    PubMed  CAS  Google Scholar 

  21. Kim, S G, Tsukahara, S., Yokoyama, S., and Takaku, H. (1992) The Influence of oligodeoxyribonucleotide phosphorothioate pyrimidine strands on triplex formation FEBS Lett 314, 29–32.

    Article  PubMed  CAS  Google Scholar 

  22. Tsukahara, S., Kim S-G, and Takaku, H. (1993) Inhibition of restriction endonu-clease cleavage site via triple helix formation by homopyrimidine phosphorothioate oligonucleotides. Biochem Biophys Res. Commun. 196, 990–996.

    Article  PubMed  CAS  Google Scholar 

  23. Perreault, J.-P., Wu, T., Cosineau, B., Oglivie, K K, and Cedergren, R. (1990) Mixed deoxy-and ribo-oligonucleotides with catalytic activity Nature (London) 334, 565–567

    Article  Google Scholar 

  24. Taylor, N. R., Kaplan, B. E., Swiderski, P, Li, H., and Rossi, J. J. (1992) Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo. Nucleic Acids Res. 20, 4559–4565

    Article  PubMed  CAS  Google Scholar 

  25. Hendry, P, McCall, M J, Santiago, F. S., and Jennings, P A (1992) A ribozyme with DNA in the hybridizing arms displays enhanced cleavage abrlny Nucleic Acids Res 20, 5737–5741

    Article  PubMed  CAS  Google Scholar 

  26. Shimayama, T., Nishikawa, F., Nishikawa, S, and Tarra, K (1993) Nuclease-resis-tant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res 21, 2605–2611

    Article  PubMed  CAS  Google Scholar 

  27. Chowrira, B. M. and Burke, J. M. (1992) Extensive phosphorothioate substitution yields highly active and nuclease-resistant hairpin ribozymes Nucleic Acids Res 20, 2835–2840

    Article  PubMed  CAS  Google Scholar 

  28. Mergny, J.-L,, Duval-Valentin, G., Nguyen, C. H, Perouault, L., Faucon, B, Rougee, M, Montenay-Garestier, T., Bisagni, E, and Helene C (1992) Triple helix-specific ligands. Science 256, 1681–1684.

    Article  PubMed  CAS  Google Scholar 

  29. Pilch, D S, Waring, M J, Sun, J-S, Rougee, M R., Nguyrn C-H., Bisagni, E, Garestier, T, and Helene, C (1993) Characterization of a triple helix-specific ligand J Mol Biol 232, 926–948.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson, W D, Tanious, F. A, Mizan, S., Yao, S, Kiselyov, A S, Zon, G, and Strekowski, L (1993) DNA triple-helix specific intercalators as antigene enhancers unfused aromatic cations. Biochemistry 32, 10,614–10,621

    Article  PubMed  CAS  Google Scholar 

  31. Zucker, M (1989) Computer prediction of RNA structure. Methods Enzymol 180, 262–288

    Article  Google Scholar 

  32. Denman, R. B (1993) Using RNAFOLD to predict the activity of small catalytic RNAs. Bio Techniques 15, 1090–1095

    CAS  Google Scholar 

  33. Stull, R. A, Taylor, L. A., and Szoka, F C, Jr (1992) Predicting antisense oligo-nucleotide inhibitory efficacy. a computational approach using histograms and thermodynamic indices Nucleic Acids Res 20, 3501–3508

    Article  PubMed  CAS  Google Scholar 

  34. Han, J., Zhu, Z, Hsu, C, and Findley, W. (1994) Slection of antisense oligonucleotides on the basis of genomic frequency of the target sequence Antisense Res Devel. 4, 53–65

    CAS  Google Scholar 

  35. Pachuk, S. J, Yoon, K, Moelling, K, and Coney, J C (1994) Selective cleavage of bcr-abl chimeric RNAs by a ribozyme targeted to non-contiguous sequences Nucleic Acids Res. 22, 301–307.

    Article  PubMed  CAS  Google Scholar 

  36. Joyce, G. F (1989) Amplification, mutation, and selection of catalytic RNA. Gene 82, 83–87

    Article  PubMed  CAS  Google Scholar 

  37. Gao, X and Huang, L (1991) Biochem. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biophys Res Commun 179, 280–285

    Article  CAS  Google Scholar 

  38. Bennett, C F., Chiang, M.Y., Chan, H., Shoemaker, J E E, and Mirabelli, C K (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol. 41, 1023–1033

    PubMed  CAS  Google Scholar 

  39. Sellenger, B A and Cech, T R. (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566–1569.

    Article  Google Scholar 

  40. Wu, G Y and Wu, C H (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system J Biol Chem 262, 4429–4432.

    PubMed  CAS  Google Scholar 

  41. Wu, G. Y and Wu, C H. (1988) Receptor-mediated gene delivery and expression in vivo J Biol Chem 263, 14,621–14,624.

    PubMed  CAS  Google Scholar 

  42. Cotten, M, Langle-Rouault, F, Kirlappos, H, Wagner, E, Mechtler, K, Zenke, M., Beug, H., and Birnstiel, M. L (1990) Transferrin-polycation-mediated introduction of DNA into human leukemia cells stimulation by agents that affect to survival of transfected DNA of modulate tranferrin receptor levels Proc Natl Acad Sci USA 87, 4033–4037

    Article  PubMed  CAS  Google Scholar 

  43. Leamon, C P and Low, P S. (1991) Delivery of macromolecules into living cells a method that exploits folate receptor endocytosis. Proc Natl. Acad SCi USA 88, 5572–5576

    Article  PubMed  CAS  Google Scholar 

  44. Citro, G., Perrotti, D., Cucco, C, D’ Agnano, I, Sacchi, A., Zupi, G., and Calabretta, B. (1992) Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides Proc Nutl Acad. Sci USA 89, 7031–7035.

    Article  CAS  Google Scholar 

  45. Manfredini, R., Grande, A, Tagliafico, E., Barbieri, D., Zucchini, P., Citro, G, Zupi, G, Francheschi, C., Torelli, U., and Ferrari, S. (1993) Inhibition of c-fes expression by antisense oligomer causes apoptosis of HL-60 cells induced to granulocytic differentiation. J Exp Med 178(2), 381–389

    Article  PubMed  CAS  Google Scholar 

  46. Wang, S., Lee, R. J., Cauchon, G, Gorenstein, D G., and Low, P S. (1995) Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol Proc Natl Acad. Sci USA 92, 3318–3322.

    Article  PubMed  CAS  Google Scholar 

  47. Leopold, L H., Shore, S. K., Newkirk, T. A, Reddy, R. M V, and Reddy, E. P (1995). Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias Blood 85(8), 2162–2170

    Google Scholar 

  48. Ferkol, T, Perales, J C., Mularo, F., and Hanson, R. W. (1996) Receptor-mediated gene transfer into macrophages Proc Natl Acad Sci USA 93, 101–105

    Article  PubMed  CAS  Google Scholar 

  49. Beltinger, C., Saragovi, H. U, Smith, R M., LeSauteur, L., Shah, N, DeDioinisio, L, Christensen, L., Raible, A, Jarett, L, and Gewirtz, A M (1995) Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides J Clin. Invest 95, 1814–1823

    Article  PubMed  CAS  Google Scholar 

  50. Citro, G., Szczylik, C., Ginobbi, P., Zupi, G., and Calabretta, B (1994) Inhibition of leukemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells Br J Cancer 69, 3, 463–467

    Article  PubMed  CAS  Google Scholar 

  51. Asok, A. C., Utley, C., van Home, K C, and Kolhause, J. F. (1981) Isolation and characterization of a folate receptor from human placenta. J Biol Chem 256, 9684–9692.

    Google Scholar 

  52. Lacey, S. W., Sanders, J M, Rothberg, K. G., Anderson, R G W, and Kamen, B A (1989) Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. J Clin Invest 84, 715–720.

    Article  PubMed  CAS  Google Scholar 

  53. Rothberg, K G., Ying, Y., Kolhause, J F., Kamen, B. A, and Anderson, R. G W (1990) The glycophospholipid-linked folate pit endocytic pathway J Cell Biol 110, 637–649

    Article  PubMed  CAS  Google Scholar 

  54. Schlub, J. and Franklin, W A (1984) The folate-binding protein of rat kidney Purification properties and cellular distribution J. Biol Chem 259, 6601–6606

    Google Scholar 

  55. Ruffner, D. E., Stormo, G D, and Uhlenbeck, O. C. (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29(47), 10,695–10,699

    Article  PubMed  CAS  Google Scholar 

  56. Greenberger, J S, Sakakeeny, M. A., Humphries, R K, Eaves, C. J., and Eckner, R J (1983) Demonstration of permanent factor-dependent multipotential erythoid/neu-trophil/basophil hematopoetic progenitor. Proc Natl Acad Sci USA 80, 2931–2935

    Article  PubMed  CAS  Google Scholar 

  57. Valtieri, M, Tweardy, D J, Caracciolo, D, Johnson, K., Mavilio, M, Altmann, S, Santoli, D, and Rovera, G. (1987) Cytokine dependent granulocytic differentiation regulation of proliferation and differentiative responses in a murine progenitor cell-line. J Immunol 138, 3829–3835

    PubMed  CAS  Google Scholar 

  58. Rovera, G, Valtieri, M, Mavilio, F, and Reddy, E P (1987) Efect of Abelson murine leukemia virus on granulocytic differentiation and Interleukin-3 dependence of a murine progenitor cell line Oncogene 1, 29–35

    PubMed  CAS  Google Scholar 

  59. Lozzio, C B and Lozzio, B B (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome Blood 45, 321–334

    PubMed  CAS  Google Scholar 

  60. Shore, S K., LaCava, M., Yendapalli, S, and Reddy, E. P (1994) BCRABL gene product aquires fibroblastic transforming potential following structural alterations in the carboxy terminal domain J Biol Chem 269, 5413–5419

    PubMed  CAS  Google Scholar 

  61. Zhu, J, Nabissa, P, Hoffman, B, Liebermann, D. A, and Shore, S. K (1996) Activated abl oncogenes and apoptosis. differing responses of transformed my-eloid progenitor cell lines. Blood 87, 4268–4375

    Google Scholar 

  62. Maniatis, T., Fritsh, E. F., and Sambrook, J (1992), in Molecular Cloning A Laboratory Manual (Sambrook, J, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 938–940

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Leopold, L.H., Shore, S.K., Reddy, R.M.V., Reddy, E.P. (1998). Folate-Polylysine-Mediated Delivery of a Multiunit Anti-BCR/ABL Ribozyme to BCR/ABL-Transformed 32D Cells. In: Scanlon, K.J. (eds) Therapeutic Applications of Ribozymes. Methods in Molecular Medicine™, vol 11. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-477-1:279

Download citation

  • DOI: https://doi.org/10.1385/0-89603-477-1:279

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-477-8

  • Online ISBN: 978-1-59259-595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics