Skip to main content

Ribozymes

Applications in Cancer Metastasis Research

  • Protocol
Therapeutic Applications of Ribozymes

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 11))

Abstract

This chapter addresses the application of ribozymes in studying an important area of cancer biology, the process of metastasis. An example is given on how ribozymes can be used to study the role in this process of one particular gene. Initially, a brief introduction to the biology of cancer metastasis is given. The procedure of selecting ribozyme target sites and constructing a ribozyme is presumed to be known by the reader. The nucleic acid sequence of the actual ribozyme is described in Subheading 2., whereas Subheading 3. focuses mainly on methods that may be original for this particular study, including assays dealing with the crucial question of whether observed phenotypic effects of introducing a ribozyme into target cells is a consequence of ribozyme activity, or merely reflects random differences in phenotypes between different cell clones. In Subheading 4. some of the difficulties and hallmarks of the above mentioned procedures are discussed, and the chapter concludes with an evaluation of the biological system used for examining putatively metastasis-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liotta, L. A and Stetler-Stevenson, W. G (1991) Tumor invasion and metastasis an imbalance of positive and negative regulation Cancer Res 51, 5054–5059.

    Google Scholar 

  2. Fodstad, Ø., and Kjønniksen, I (1994) Microenvironment revisited: time for reappraisal of some prevailing concepts of cancer metastasis J Cell Biochem 56, 23–28

    Article  PubMed  CAS  Google Scholar 

  3. Fidler, I J. (1990) Critical factors in the biology of human cancer metastasis twenty-eighth G H A. Clowes Memorial Award lecture Cancer Res 50, 6130–6138.

    PubMed  CAS  Google Scholar 

  4. MacDonald, N J and Steeg, P. S (1993) Molecular basis of tumour metastasis Cancer Surveys 16, 175–199

    PubMed  CAS  Google Scholar 

  5. Liotta, L A (1992) Cancer cell invasion and metastasis. Sci Am 266, 54–59

    Article  PubMed  CAS  Google Scholar 

  6. Steeg, P. S (1991) Genetic control of the metastatic phenotype Sem Cancer Biol 2, 105–110

    CAS  Google Scholar 

  7. Steeg, P S, Bevilacqua, G, Kopper, L., Thorgeirsson, U P, Talmadge, J E, Liotta, L A., and Sobel, M. E (1988) Evidence for a novel gene associated with low tumor metastatic potential J Natl Cancer Inst 80, 200–204

    Article  PubMed  CAS  Google Scholar 

  8. de la Rosa, A., Williams, R. L, and Steeg, P S. (1995) Nm23/nucleoside diphosphate kinase: toward a structural and biochemical understanding of its biological functions Bioessays 17, 53–62

    Article  PubMed  Google Scholar 

  9. Dong, J.-T, Lamb, P. W, Rinker-Schaeffer, C. W., Vukanovic, J, Ichikawa, T, Isaacs, J T., and Barrett, J C (1995) KAII, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2 Science 268, 884–886.

    Article  PubMed  CAS  Google Scholar 

  10. Davres, B R, Davies, M P, Gibbs, F E, Barraclough, R, and Rudland, P S (1993) Induction of the metastatic phenotype by transfection of a benign rat mammary epithehal cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1 Oncogene 8, 999–1008

    Google Scholar 

  11. Mælandsmo, G M., Hovig, E, Skrede, M, Engebraaten, O, Flørenes, V A., Myklebost, O., Grigorian, M, Lukanidin, E., Scanlon, K J, and Fodstad, Ø (1996) Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mtsl) ribozyme. Cancer Res 56, 5490–5498

    PubMed  Google Scholar 

  12. Barraclough, R., Savin, J., Dube, S. K., and Rudland, P S (1987) Molecular cloning and sequence of the gene for p9Ka A cultured myoepithelial cell protein with stiong homology to S-100, a calcium-binding protein J Mol Biol 198, 13–20.

    Article  PubMed  CAS  Google Scholar 

  13. Ebralidze, A, Tulchinsky, E., Grigorian, M, Afanasyeva, A, Senin, V, Revazova, E, and Lukanidin, E (1989) Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family Genes Dev 3, 1086–1093

    Article  PubMed  CAS  Google Scholar 

  14. Kashani-Sabet, M, Funato, T, Tone, T, Jiao, L, Wang, W., Yoshida, E, Kashfinn, B. I., Shitara, T., Wu, A. M., Moreno, J. G., Traweek, S T., Ahlering, T. E, and Scanlon, K. J (1992) Reversal of the malignant phenotype by an anti-rag ribozyme Antisense Res. Dev 2, 3–15

    PubMed  CAS  Google Scholar 

  15. Hilt, D. C. and Kligman, D (1991) The S-100 protein family: a biochemical and functional overview, in Novel Calcium-Binding Proteins Fundamentals of Clinical Implications (Heizmann, C. W., ed.), Springer Verlag, Berlin, pp. 65–103.

    Google Scholar 

  16. Schafer, B. W and Heizmann, C W (1996) The S 100 family of EF-hand calcium-binding proteins: functions and pathology TIBS 21, 134–140.

    PubMed  CAS  Google Scholar 

  17. Fodstad, Ø, Brøgger, A., Bruland, Ø., Solheim, Ø. P, Nesland, J. M., and Pihl, A (1986) Characteristics of a cell line established from a patient with multiple osteosarcoma, appearing 13 years after treatment for bilateral retinoblastoma Int J. Cancer 38, 33–40.

    Article  PubMed  CAS  Google Scholar 

  18. Chen, C. and Okayama, H (1987) High-efficiency transfotmation of mammalian cells by plasmid DNA. Mol Cell. Biol 7, 2745–2752

    PubMed  CAS  Google Scholar 

  19. Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts. amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998–9002.

    Article  PubMed  CAS  Google Scholar 

  20. Frohman, M. A (1993) Rapid amplification of complementary DNA ends for generanon of full-length complementary DNAs: thermal RACE Meth Enzymol 218, 340–356

    Article  PubMed  CAS  Google Scholar 

  21. Frohman, M A (1994) Cloning PCR products, in The Polymerase Chain Reaction (Mullis, K. B., Ferré, F., and Gibbs, R. A., eds.), Birkhauser, Boston, pp. 14–37.

    Chapter  Google Scholar 

  22. Kjønniksen, I., Nesland, J M, Pihl, A, and Fodstad, Ø. (1990) Nude rat model for studying metastasis of human tumor cells to bone and bone marrow. J Natl. Cancer Inst. 82, 408–412

    Article  PubMed  Google Scholar 

  23. Lundeberg, J, Wahlberg, J, and Uhlen, M. (1991) Rapid calorimetric quantification of PCR-amplified DNA Biotechniques 10, 68–75.

    PubMed  CAS  Google Scholar 

  24. Steinecke, P, Herget, T., and Schreier, P. H. (1992) Expression of a chimeric ribozyme gene results in endonucleolytic cleavage of target mRNA and a concomitant reduction of gene expression in vivo. EMBO J 11, 1525–1530

    PubMed  CAS  Google Scholar 

  25. Scanlon, K. J., Ishida, H., and Kashani-Sabet, M (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc Natl Acad Sci USA 91, 11,123–11,127.

    Article  PubMed  CAS  Google Scholar 

  26. Saiki R. (1989) PCR Technology. Principles and Applications for DNA Amplification Stockton, New York

    Google Scholar 

  27. Hung, T., Mak, K., and Fong, K (1990) A specificity enhancer for polymerase chain reaction Nucleic Acids Res 18, 4953.

    Article  PubMed  CAS  Google Scholar 

  28. Fidler, I. J, Wilmanns, C., Staroselsky, A., Radinsky, R., Dong, Z, and Fan, D. (1994) Modulation of tumor cell response to chemotherapy by the organ environment Cancer Met Rev 13, 209–222.

    Article  CAS  Google Scholar 

  29. Kjønniksen, I., Winderen, M., Bruland, Ø, and Fodstad, Ø (1994) Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats Cancer Res 54, 1715–1719

    PubMed  Google Scholar 

  30. Rossi, J J (1994) Practical ribozymes. Making ribozymes work in cells Curr Biol. 4, 469–471.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson, J. D., Macejak, D, Couture, L., and Stinchcomb, D T (1995) Ribozymes in gene therapy Nature Med 1, 277,278.

    Google Scholar 

  32. Marschall, P, Thomson, J. B, and Eckstein, F (1994) Inhibition of gene expression with ribozymes Cell Mol NeuroBiol 14, 523–538.

    Article  PubMed  CAS  Google Scholar 

  33. Sullivan, S M (1994) Development of ribozymes for gene therapy J Invest Dermatol 103, 85S–89S

    Article  PubMed  CAS  Google Scholar 

  34. Scanlon, K J, Ohta, Y, Ishida, H, Kijima, H., Ohkawa, T, Kaminski, A, Tsai, J, Horng, G., and Kashani-Sabet, M (1995) Oligonucleotide-mediated modulation of mammalian gene expression FASEB J 9, 1288–1296

    PubMed  CAS  Google Scholar 

  35. Rossi, J J. (1995) Controlled, targeted, intracellular expression of ribozymes progress and problems. Trends Biotechnol 13, 301–306.

    Article  PubMed  CAS  Google Scholar 

  36. Rossi, J J (1995) Therapeutic antisense and ribozymes Br Med Bull 51, 217–225

    PubMed  CAS  Google Scholar 

  37. Morgan, R A and Anderson, W F (1993) Human gene therapy Annu Rev Biochem 62, 191–217

    Article  PubMed  CAS  Google Scholar 

  38. Sullenger B A and Cech T R.(1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA Science 262, 1566–1569

    Article  PubMed  CAS  Google Scholar 

  39. Terns, M P, Dahlberg, J E, and Lund, E (1993) Multiple cis-acting signals for export of pre-U1 snRNA from the nucleus Genes Dev 7, 1898–1908

    Article  PubMed  CAS  Google Scholar 

  40. Bratty, J, Chartrand, P, Ferbeyre, G, and Cedergren, R (1993) The hammerhead RNA domain, a model ribozyme Biochim Biophys Acta 1216, 345–359

    PubMed  CAS  Google Scholar 

  41. Heidenreich, O, Pieken, W, and Eckstein, F (1993) Chemically modified RNA approaches and applications FASEB J 7, 90–96

    PubMed  CAS  Google Scholar 

  42. Heidenreich, O, Benseler, F., Fahrenholz, A, and Eckstein, F (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidme nucleosides and phosphorothioates J Biol Chem 269, 2131–2138.

    PubMed  CAS  Google Scholar 

  43. Lyngstadaas, S. P., Risnes, S., Sproat, B. S, Thrane, P. S., and Prydz, H P (1995) A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo EMBO J 14, 5224–5229

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Mælandsmo, G.M., Kjønniksen, I., Hovig, E., Scanlon, K.J., Fodstad, Ø. (1998). Ribozymes. In: Scanlon, K.J. (eds) Therapeutic Applications of Ribozymes. Methods in Molecular Medicine™, vol 11. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-477-1:241

Download citation

  • DOI: https://doi.org/10.1385/0-89603-477-1:241

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-477-8

  • Online ISBN: 978-1-59259-595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics