Skip to main content

Ribozymes as a Novel Approach for the Treatment of Human Pancreatic carcinoma

  • Protocol
Therapeutic Applications of Ribozymes

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 11))

  • 172 Accesses

Abstract

Current advances in the understanding of the genetic mechanisms of carcinogenesis and manipulation of gene expression have introduced gene therapy as a new strategy for cancer therapeutics. Recently, gene modulation using specific oligonucleotides have been developed and defined as an effective strategy for suppressing the function of genes (14). The types of oligonucleotides used to modulate specific gene expression include triplex DNA, antisense DNA/RNA and ribozymes (catalytic RNAs; for a review see ref. 1). Antisense oligonucleotides are capable of altering the translation of mRNA and thus inhibit the transfer of information from the gene to the protein. Antisense-mediated gene modulation has been shown to be effective for gene therapy (57). In contrast, ribozymes have been characterized as RNA molecules having site-specific catalytic activity (8,9). Trans-acting ribozyme molecules, such as “hammerhead” and “hairpin” ribozymes, possess a catalytic core and two flanking sequences which bind specifically to its target mRNA. Ribozymes are also occasionally defined as “partial” antisense molecules. However, compared to the classical an&sense-mediated gene modulation, ribozyme strategies have a few advantages due to their site-specific cleavage activity and catalytic potential (2,10). In recent years, researchers have described the efficacy of ribozymes against various oncogenes, such as ras, c-fos, and bcr-abl (11), the MDR-1 drug resistance gene (12,13), and the human immunodeficiency virus type 1 (10,14,15). Our Studies have previously demonstrated that anti-oncogene ribozymes effectively suppress the expression of targeted genes and result in the reversal of the malignant phenotype in human cancer cells (1624).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scanlon, K. J., Ohta, Y., Ishida, H., Kijima, H., Ohkawa, T., Kaminski, A, Tsai, J., Horng, G, and Kashani-Sabet, M. (1995) Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J 6, 1288–1296

    Google Scholar 

  2. Kashani-Sabet, M. and Scanlon, K J. (1995) Application of ribozymes to cancer gene therapy. Cancer Gene Ther. 2, 213–221.

    PubMed  CAS  Google Scholar 

  3. Christoferson, R E and Mar, J. J (1995) Ribozymes as human therapeutic agents. J Med. Chem. 38, 2023–2037

    Article  Google Scholar 

  4. Helene, C (1994) Control of oncogene expression by antisense nucleic acids. Eur J Cancer 30A, 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  5. Georges, R. N., Mukhopadhyay, T, Zhang, Y., Yen, N., and Roth, J. A. (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 53, 1743–1746

    PubMed  CAS  Google Scholar 

  6. Zhang Y., Mukhopadhyay T., Donehower L.A, Georges R N.,and Roth J.A.(1993) Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer inhibits expression of the malignant phenotype. Human Gene Ther. 4, 451–460

    Article  CAS  Google Scholar 

  7. Mercola, D and Cohen, J S. (1995) Antisense approach to cancer gene therapy. Cancer Gene Ther 2, 47–59

    PubMed  CAS  Google Scholar 

  8. Castanotto, D., Rossi, J. J., and Sarver, N (1994) Antisense catalytic RNAs as therapeutic agents Adv Pharmacol 25, 289–317

    Article  PubMed  CAS  Google Scholar 

  9. Symons, R H (1994) ribozymes. Curr Opin Structural Biol 4, 322–330

    Article  CAS  Google Scholar 

  10. Kijima, H, Ishida, H., Ohkawa, T., Kashani-Sabet, M, and Scanlon, K. J (1995) Therapeutic applications of ribozymes. Pharmacol Ther 68, 247–267

    Article  PubMed  CAS  Google Scholar 

  11. Irie, A., Kijima, H, Ohkawa, T, Bouffard, D. Y, Suzuki, T, Curcio, L. D., Holm, P. S, Sassani, A, and Scanlon, K J (1997) Anti-oncogene ribozymes for cancer gene therapy Adv Pharmacol., 40, 207–257

    Article  PubMed  CAS  Google Scholar 

  12. Bouffard, D Y, Ohkawa, T, Kijima, H, Irie, A, Suzuki, T, Curcio, L D, Holm, P S., Sassani, A., and Scanlon, K J (1996) oligonucleotide modulation of multidrug resistance Euv J Cancer 32A, 1010–1018

    Article  CAS  Google Scholar 

  13. Ohkawa, T., Kijima, H, Irie, A, Horng, G, Kaminski, A, Tsai, J, Kashfian, B I, and Scanlon, K J. (1996) Oligonucleotide modulation of multidrug resistance gene expression, in Multidrug Resistance in Cancer Cells (Gupta, S and Tsuruo, T, eds) Wiley, England, pp. 413–433

    Google Scholar 

  14. Sarver, N., Cantin, E. M., Chang, P S, Zaia, J. A., Ladne, P A, Stephens, D A, and Rossi, J. J (1990) ribozymes as potential anti-HIV-1 therapeutic agents Science 241, 1222–1225

    Article  Google Scholar 

  15. Yu, M, Ojwang, J, Yamada, O., Hample, A, Rapapport, J, Looney, D., and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type-1. Proc Natl Acad Sci USA 87, 6340–6344

    Article  Google Scholar 

  16. Scanlon, K. J., Jiao, L., Funato, T., Wang, W., Tone, T, Rossi, J. J., and Kashani-Sabet, M. (1991) Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein Proc Natl Acad Sci USA 88, 10,591–10,595

    Article  PubMed  CAS  Google Scholar 

  17. Kashani-Sabet, M., Funato, T, Tone, T., Jiao, L, Wang, W, Yoshida, E, Kashfian, B I, Shitara, T., Wu, A. M, Moreno, J G, Traweek, S T, Ahlering, T E, and Scanlon, K J (1992) Reversal of the malignant phenotype by an anti-ras ribozyme Antisense Res. Dev 2, 3–15

    PubMed  CAS  Google Scholar 

  18. Tone, T., Kashani-Sabet, M, Funato, T., Shitara, T, Yoshida, E., Kashfian, B. I, Horng, M., Fodstad, O, and Scanlon, K. J (1993) Suppression of EJ cells tumori-genicity In Vivo 7, 471–476

    PubMed  CAS  Google Scholar 

  19. Funato, T, Shitara, T., Tone, T., Jiao, L., Kashani-Sabet, M., and Scanlon, K. J. (1994) Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol 48, 1471–1475

    Article  PubMed  CAS  Google Scholar 

  20. Ohta, Y, Tone, T, Shitara, T., Funato, T., Jiao, L., Kashfian, B I., Yoshida, E, Horng, M, Tsai, P., Lauterbach, K., Sashani-Sabet, M, Florenes, V A., Fodstad, O, and Scanlon, K. J. (1994) H-ras ribozyme-mediated alteration of the human melanoma phenotype Ann. NY Acad Sci 716, 242–253

    Article  PubMed  CAS  Google Scholar 

  21. Kashani-Sabet, M., Funato, T, Florenes, V A, Fodstad, O, and Scanlon, K J. (1994) Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res 54, 900–902

    PubMed  CAS  Google Scholar 

  22. Scanlon, K. J, Ishida, H., and Kashani-Sabet, M. (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype.Proc. Natl Acad Sci USA 91, 11,123–11,127

    Article  PubMed  CAS  Google Scholar 

  23. Feng, M., Cabrera, G, Deshane, J., Scanlon, K. J., and Curiel, D. T (1995) Neoplastic reversion accomplished by high eficiency adenoviral-mediated delivery of an anti-ras ribozyme Cancer Res 55, 2024–2028.

    PubMed  CAS  Google Scholar 

  24. Ohta, Y, Kijima, H., Kashani-Sabet, M., Scanlon, K. J. (1996) Suppression of the malignant phenotype of melanoma cells by anti-oncogene ribozymes J Invest Dermatol 106, 275–280

    Article  PubMed  CAS  Google Scholar 

  25. Warshaw, A L and Fernandez-del Castillo, C (1992) Pancreatic carcinoma N Engl J Med 326, 455, 456.

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi, K. and Enjoji, E. (1989) carcinoma of the pancreas: a climcopathologic study of 96 cases with immunohistochemical observations Jup J Clin Oncol 19, 1422.

    Google Scholar 

  27. Ozaki, H. (1992) Improvement of pancreatic cancer treatment from the Japanese experience in the 1980. Int. J Pancreatol. 12, 5–9.

    PubMed  CAS  Google Scholar 

  28. Arbuck, S. G. (1990) Overview of chemotherapy for pancreatic cancer. Int J Pancreatol 7, 209–222.

    PubMed  CAS  Google Scholar 

  29. Cohn, I. Jr. (1990) Overview of pancreatic cancer, 1989. Int J Pancreatol 7, 1–11.

    PubMed  Google Scholar 

  30. Egan S. E. and Weinberg, R. A. (1993) The pathway to signal achievement Nature 365, 781–783.

    Article  PubMed  CAS  Google Scholar 

  31. Slamon, D. J., deKernion, J B., Verma, I. M, and Cline, M J. (1984) Expression of cellular oncogenes in human malignancies Science 224, 256–262.

    Article  PubMed  CAS  Google Scholar 

  32. Barbacid, M. (1987) ras genes. Annu Rev Biochem 56, 779–827.

    Article  PubMed  CAS  Google Scholar 

  33. BOS, J. L. (1989) ras oncogenes in human cancer. a review. Cancer Res 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  34. Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., and Perucho, M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554

    Article  PubMed  CAS  Google Scholar 

  35. Smit, V T. H. B. M, Boot, A. J M., Smit, A. M. M., Fleuren, G. J., Cornelisse, C J, and Boss, J. L. (1988) K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 16, 7773–7782.

    Article  PubMed  CAS  Google Scholar 

  36. Grunewald, K, Lyons, J, Frohlich, A., Feichtinger, H., Weger, R A, Schwab, G, Janssen, J. W. G, and Bartram, C. R. (1989) Hugh frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  37. Tada, M., Yokosuka, O., Omata, M., Ohto, M, and Isono, K (1990) Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer 66, 930–935.

    Article  PubMed  CAS  Google Scholar 

  38. Nagata, Y., Abe, M, Motoshima, K., Nakayama, E., and Shiku, H. (1990) Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer in Japanese Jpn J Cancer Res. 81, 135–140

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa, A., Ohtake, K., Ohashi, K., Hori, M., Kitagawa, T, Sugano, H, and Kato, Y. (1993) Frequent c-K-ras oncogene activation in mucous cell hyperplasia of pancreas suffering from chronic inflammation. Cancer Res 53, 953–956.

    PubMed  CAS  Google Scholar 

  40. DiGiuseppe, J. A., Hruban, R. H., Offerhaus, G. J, Clement, M. J., van den Berg, F M, Cameron, J L., and van Mansfeld, A. D. M (1994) Detection of K-ras mutations in mutinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma. Am J Pathol. 144, 889–895

    PubMed  CAS  Google Scholar 

  41. Kijima, H., Bouffard, D. Y., and Scanlon, K. J (1996) Ribozyme-mediated reversal of human pancreatic carcinoma phenotype, in Bone Marrow Transplantation-Basic and Clinical Studies (Ikehara, S, Takaku, F, and Good, R. A., eds), Springer-Verlag, Tokyo, pp 153–163

    Google Scholar 

  42. Carter, G., Gribert, C, and Lemome, N. R (1995) Effects of antisense oligonucleotides targeting K-ras expression in pancreatic cancer cell lines. Int J Oncol. 6, 1105–1112

    PubMed  CAS  Google Scholar 

  43. Aoki, K, Yoshida, T., Sugimura, T, and Terada, M (1995) Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity Cancer Res 55, 3810–3816.

    PubMed  CAS  Google Scholar 

  44. Ng, S-Y, Gunning, P, Eddy, R, Ponte, P, Leavitt, J, Show, T, and Kedes, L (1985) Evolution of the functional human β-actin gene and its multi-pseudo gene family. Conservation of noncoding regions and chromosomal dispersion of pseudogenes Mol. Cell Biol 5, 2720–2732

    PubMed  CAS  Google Scholar 

  45. Gunning, P, Leavitt, J, Muscat, G, Ng, S.-Y, and Kedes, L (1987) A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad. Sci USA 84, 4831–4835.

    Article  PubMed  CAS  Google Scholar 

  46. Sambrook, J,, Fritsch, E. F, and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  47. Lee, F-J S, Moss, J., and Lin, L-W. (1992) A simplified procedure for hybridization of RNA blots. Biotechniques 13, 130–132.

    Google Scholar 

  48. Kuroki, T (1978) Agar plate culture and Lederberg-style replica plating of mammalian cells Methods Cell Blol 9, 157–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Kijima, H., Bouffard, D.Y., Scanlon, K.J. (1998). Ribozymes as a Novel Approach for the Treatment of Human Pancreatic carcinoma. In: Scanlon, K.J. (eds) Therapeutic Applications of Ribozymes. Methods in Molecular Medicine™, vol 11. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-477-1:193

Download citation

  • DOI: https://doi.org/10.1385/0-89603-477-1:193

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-477-8

  • Online ISBN: 978-1-59259-595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics