Skip to main content

Oxygen Consumption Methods

Xanthine Oxidase and Lipoxygenase

  • Protocol
Free Radical and Antioxidant Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 108))

  • 1588 Accesses

Abstract

A biochemical paradox that has been observed for many years is now becoming understood: O2, essential for the aerobic life forms, can be inappropriately metabolized, becoming toxic to an organism. Mammals derive most of their cellular adenosine triphosphate (ATP) from the controlled four-electron reduction of O2, to form H2O by the mitochondrial electron-transport system. Approximately 98% of all O2 consumed by cells enters the mitochondria, where it is reduced by a terminal oxidase, such as cytochrome oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sies, H. (1991) Oxidative stress, introduction, in Oxidative Stress: Oxidant and Antioxidant (Sies, H., ed.), Academic Press, San Diego, CA, pp. 15–22.

    Google Scholar 

  2. Halliwell, B. (1994) Free radicals, antioxidants and human disease: curiosity, cause, or consequence? Lancet 344, 721.

    Article  PubMed  CAS  Google Scholar 

  3. Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. Crit Rev. Toxicol. 23, 21–48

    Article  PubMed  CAS  Google Scholar 

  4. O’Flaherty, J. T. (1982) Lipid mediators of inflammation and allergy Lab Invest 47, 314–317.

    Google Scholar 

  5. Stadler, I., Kapui, Z., and Ambrus, J. L. (1994) Study on the mechanisms of action of sodium meclofenamic acid (meclomen) a “Double Inhibitor” of the arachidonic acid cascade J Med 25(6), 371–382.

    PubMed  CAS  Google Scholar 

  6. Fluber, J. C., Succari, M., and Cals, M. S. (1992) Semi-automated assay of erythrocyte Cu-Zn superoxide dismutase activity Clin. Biochem 25, 115–119.

    Article  Google Scholar 

  7. Wheeler, C., Salzman, J. A., Elsayed, N. M., Omaye, S. T., and Korte, D. W. (1990) Automated assay for superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity Anal Biochem. 184, 193–199.

    Article  PubMed  CAS  Google Scholar 

  8. Dormandy, T. L. (1988) In praise of lipid peroxidation. Lancet 2, 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  9. Cheeseman, K. H. (1993) Mechanism and effects of lipid peroxidation Mol Aspects Med. 14(3), 191–197.

    Article  PubMed  CAS  Google Scholar 

  10. Masotti, L., Casali, E., and Galeotie, T. (1988) Lipid peroxidation and tumors Free Rad. Biol. Med. 4, 377–386

    Article  PubMed  CAS  Google Scholar 

  11. Saugstad, O. D. (1996) Role of xanthine oxidase and its inhibitor in hypoxia reoxygenation injury Pediatrics 98, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stadler, I. (1998). Oxygen Consumption Methods. In: Armstrong, D. (eds) Free Radical and Antioxidant Protocols. Methods in Molecular Biology™, vol 108. Humana Press. https://doi.org/10.1385/0-89603-472-0:3

Download citation

  • DOI: https://doi.org/10.1385/0-89603-472-0:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-472-3

  • Online ISBN: 978-1-59259-254-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics