Skip to main content

Autofluorescent Ceroid/Lipofuscin

  • Protocol
Free Radical and Antioxidant Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 108))

Abstract

Autofluorescent ceroid/lipofuscin-type pigments are usually classified and defined as follows: Lipofuscin is an intracellular, age-related, fluorescent, cytoplasmic, granular pigment. It is mainly present in secondary lysosomes of post-mitotic cells, such as neurons, cardiac myocytes, and retinal pigment epithelial (RPE) cells Ceroid is a group of biopigments, also with an intralysosomal location, which are rapidly produced as a result of various pathologies and experimental conditions, such as x-irradiation, E-vitamin deficiency, starvation, and intoxication. Ceroid is probably akin to lipofuscin and may share the same mechanisms of formation, although it does not accumulate in relation to aging. It may be present in a variety of cells, e.g., in the kidney, thymus, pancreas, testis, prostate, seminal vesicles, uterus, and adrenal gland of man and animal (14). Advanced glycation end-products (AGEs) are mainly found extracellularly in association with long-lived proteins, e.g., in the cataractic lens of the eye (5,6), and in cross-linked collagen of the skin, arteries, lungs, and kidneys (79). They are formed during complex non-enzymatic glycation-reactions involving Maillard- and Amadori-type chemistry. AGEs may also, however, be present intracellularly, and they probably constitute a substantial part of lipofuscin and ceroid. A variety of synthetic age pigment-like fluorophores (APFs) can be produced by oxidation/peroxidation of different biological materials. Most such fluorophores are

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strehler, B. L (ed.) (1977) Time, Cells, and Aging. 2nd ed. Academic Press, New York.

    Google Scholar 

  2. Ordy, J. M. and Brizzee, K. R (eds.) (1975) Neurobiology of Aging. Plenum Press, New York.

    Google Scholar 

  3. Feeney, L. (1978) Lipofuscin and melanin of human retinal pigment epithelium. Invest. Ophthal. Vis. Sci. 7, 583–600.

    Google Scholar 

  4. Miquel, J., Oro, J., Bensch, K. G., and Johnson, J. E. (1977) Lipofuscin fine-structural and biochemical studies, in Free Radicals in Biology Vol. III (Pryor, W. A., ed.), Academic Press, New York, pp. 133–182

    Google Scholar 

  5. Duncan, G. (ed.) (1981) Mechanisms of Cataract Formation in the Human Lens. Academic Press, New York

    Google Scholar 

  6. Monnier, V. M. and Cerami, A. (1983) Detection of nonenzymatic browning products in the human lens Biochim. Biophys. Acta 760, 97–103

    PubMed  CAS  Google Scholar 

  7. Verzar, F. (1957) The ageing of connective tissue Gerontologia 1, 363–378

    Article  PubMed  CAS  Google Scholar 

  8. Monnier, V. M. and Cerami, A. (1983) Nonenzymatic glycosylation and browning of proteins in vivo, in The Maillard Reaction in Foods and Nutrition (Waller, G. R. and Feather, M S., eds.), American Chemical Society, Washington DC, pp. 431–149.

    Chapter  Google Scholar 

  9. Baynes, J. W. and Monnier, V. M. (eds.) (1989) The Maillard Reaction in Aging, Diabetes, and Nutrition. Alan R. Liss, Inc., NY.

    Google Scholar 

  10. Strehler, B. L. (1964) On the histochemistry and ultrastructure of age pigment, in Advances in Gerontological Research (Strehler, B. L., ed.), Academic Press, New York, pp. 343–384.

    Google Scholar 

  11. Porta, E. A. and Hartroft, W. S. (1969) Lipid pigments in relation to aging and dietary factors, in Pigments in Pathology (Wolman, W., ed.), Academic Press, NY, pp. 191–235.

    Google Scholar 

  12. Sohal, R. (ed.) (1981) Age Pigments Elsevier, Amsterdam.

    Google Scholar 

  13. Yin, D. (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Rad. Biol. Med. 21, 871–888.

    Article  PubMed  CAS  Google Scholar 

  14. Brunk, U. T. and Sohal, R. S. (1991) Mechanisms of lipofuscin formation, in Membrane Lipid Oxidation vol II (Vigo-Pelfrey, C., ed), CRC Press, Boca Raton, FL, pp. 191–201

    Google Scholar 

  15. Brunk, U. T, Marzabadi, M. R. and Jones, C. B. (1992) Lipofuscin, lysosomes and iron, in Iron and Human Disease (Lauffer, R. B., ed), CRC Press, Boca Raton, FL. pp 237–260.

    Google Scholar 

  16. Brunk, U. T., Jones, C. B., and Sohal, R. S. (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mut Res. 275, 395–403.

    CAS  Google Scholar 

  17. Sohal, R. S. and Brunk, U. T. (1990) Lipofuscin as an indicator of oxidative stress of aging, in Lipofuscin and Ceroid Pigments (Porta, E. ed.), Plenum, New York Adv Exp. Med. Biol Vol 226,. pp. 17–26.

    Google Scholar 

  18. Sohal, R. S. and Brunk, U. T. (1990) Mitochondrial production of proxidants and cellular senescence Mut Res. 275, 295–304

    Google Scholar 

  19. Marzabadi, M. R. Yin, D., and Brunk, U. T. (1992) Lipofuscin in a model system of cultured cardiac myocytes, in Free Radicals and Aging (Emerit, I. And Chance, B., eds.), Birkhauser Verlag, Basel Switzerland, pp 78–88.

    Google Scholar 

  20. Brunk, U. T. Wihlmark, U., Wrigstad, A., Roberg, K., and Nilsson, S-E. (1995) Accumulation of lipofuscin within retinal pigment epithelial cells results in enhanced sensitivity to photo-oxidation. Gerontology 41 (suppl 2), 201–212

    Article  PubMed  CAS  Google Scholar 

  21. Yin, D. and Nilsson, E. (1997) The preparation of artificial ceroid/lipofuscin by UV-oxidation of subcellular organelles. Mech. Ageing Dev 99, 61–78.

    PubMed  Google Scholar 

  22. Brunk, U. T. and Ericsson, J. L. E. (1972) Electron microscopical studies on rat brain neurons: localization of acid phosphatase and mode of formation of lipofuscin bodies. J. Ultrastruct Res. 38, 1–15

    Article  PubMed  CAS  Google Scholar 

  23. Bjorkerud, S. (1964) Isolated lipofuscin granules—a survey of a new field Adv Gerontol Res 1, 257–288.

    CAS  Google Scholar 

  24. Siakotos, A. N. and Koppang, N. (1973) Procedures for the isolation of lipopigments from brain, heart and liver, and their properties: a review. Mech. Ageing Dev 2, 177–200

    Article  PubMed  CAS  Google Scholar 

  25. Elleder, M. (1981) Chemical characterization of age pigment, in Age Pigments (Sohal, R. S., ed), Elsevier, Amsterdam, pp 204–241

    Google Scholar 

  26. Patro, N., Patro, I. K., and Mathur, R. (1993) Changes in the properties of cardiac lipofuscin with age and environmental manipulation. Asian J. Exp. Sci. 7, 57–60.

    Google Scholar 

  27. Fletcher, B. L., Dillard, C. J., and Tappel, A. L. (1973) Measurement of fluorescent lipid peroxidation products in biological systems and tissues Anal. Biochem 52, 1–9

    Article  PubMed  CAS  Google Scholar 

  28. Desai, I. D., Fletcher, B. L., and Tappel, A. L (1975) Fluorescent pigments from uterus of vitamin E deficient rats. Lipids 10, 307–309

    Article  PubMed  CAS  Google Scholar 

  29. Csallany, A. S. and Ayaz, K. L. (1976) Quantitative determination of organic solvent soluble lipofuscin pigments in tissues. Lipids 11, 412–417.

    Article  PubMed  CAS  Google Scholar 

  30. Maeba, R., Shimasaki, H., Ueta, N., and Inoue, K. (1990) Accumulation of ceroid-like pigments in macrophages cultured with phosphatidylcholine liposomes in vitro Biochim. Biophys. Acta 1042, 287–293

    PubMed  CAS  Google Scholar 

  31. Kikugawa, K., Kato, T., Yamaki, S., and Kasai, H. (1994) Examination of the extraction methods and re-evaluation of blue fluorescence generated in rat tissues in situ. Biol. Pharm Bull. 17, 9–15.

    PubMed  CAS  Google Scholar 

  32. Ettershank, G., Macdonnell, I., and Croft, R. (1983) The accumulation of age pigment by the fleshfly sarcophage bullata parker (diptera: Sarcophagidae) Aust J. Zoology 31, 131–138.

    Article  Google Scholar 

  33. Ettershank, G. (1984) A new approach to the assessment of longevity in the Antarctic krill euphausia superba. J. Crustac. Biol. 4, 295–305.

    Google Scholar 

  34. Tsuchida, M., Miura, T., and Aibara, K. (1987) Lipofuscin and lipofuscin-like substances Chem. Phys. Lipids 44, 297–325.

    Article  PubMed  CAS  Google Scholar 

  35. Porta, E. A., Mower, H. F., Moroye, M., Lee, C., and Palimbo, N. E. (1988) Differential features between lipofuscin (age pigment) and various experimentally produced ceroid pigments, in Lipofuscin-1987: State of the Art (Zs.-Nagy, I., ed.), Excerpta Medica, Amsterdam, pp. 341–374.

    Google Scholar 

  36. Eldred, G. E. and Katz, M. L. (1989) The autofluorescent products of lipid peroxidation may not be lipofuscin-like Free Rad. Biol. Med 7, 157–163

    Article  PubMed  CAS  Google Scholar 

  37. Yin, D. and Brunk, U. T. (1991) Microfluorometric and fluorometric lipofuscin spectral discrepancies A concentration dependent metachromatic effect? Mech. Ageing Dev. 59, 95–109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yin, D., Brunk, U. (1998). Autofluorescent Ceroid/Lipofuscin. In: Armstrong, D. (eds) Free Radical and Antioxidant Protocols. Methods in Molecular Biology™, vol 108. Humana Press. https://doi.org/10.1385/0-89603-472-0:217

Download citation

  • DOI: https://doi.org/10.1385/0-89603-472-0:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-472-3

  • Online ISBN: 978-1-59259-254-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics