Regulatory Antioxidant Enzymes

  • C. E. Pippenger
  • Richard W. Browne
  • Donald Armstrong
Part of the Methods in Molecular Biology™ book series (MIMB, volume 108)


Enzymes play an important role in the production of radicals and their metabolism. Techniques to measure pro-oxidant conditions that generate radicals and end-products are described in various chapters throughout this book. The major defense enzymes are superoxide dismutase (SOD), which converts the superoxide radical to hydrogen peroxide: (H2O2), catalase (CAT), selenium (SE)-dependent glutathione peroxidase (GSHPx), and leukocytic myeloperoxidase, which degrade inorganic and lipid hydroperoxides formed by interaction with reactive oxygen species and glutathione-S-transferase (GST; which also has peroxidase activity, but is selenium-independent) (1). The activity of GSHPx is coupled to glutathione reductase (GSSG-R), which maintains reduced glutathione (GSH) levels (2). Enzyme activity can be decreased by negative feedback from excess substrate or from damage by oxidative modification (3).


Amyotrophic Lateral Sclerosis Potassium Phosphate Buffer Lipid Hydroperoxide Triplicate Sample Nicotinamide Adenine Dinucleotide Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Michiels, C, Raes, M, Toussant, O., and Remacle, J (1994) Importance of Se glutathione peroxidase, catalase and Cu/Zu—SOD for cell survival against oxidative stress. Free Rad Biol Med 17, 235–248.PubMedCrossRefGoogle Scholar
  2. 2.
    Bompart, G. J., Prevot, D. S, and Bascands, J-L. (1990) Rapid automated analysis of glutathione reductase, peroxidase, and S-transferase activity. Clin. Biochem. 23, 501–504.PubMedCrossRefGoogle Scholar
  3. 3.
    Tabatabaie, T. and Floyd, R A. (1994) Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 314, 112–119PubMedCrossRefGoogle Scholar
  4. 4.
    Koppenol, W. H. (1990) What is in a name? Rules for radicals. Free Rad. Biol Med. 9, 225–227.PubMedCrossRefGoogle Scholar
  5. 5.
    Grisham, M. B. (Ed.) (1992) Reactive Metabolites of Oxygen and Nitrogen in Biology and Medicine R. G. Landes Co., Austin, TX, pp. 104.Google Scholar
  6. 6.
    Diplock, A. (1994) Antioxidants and free radical scavengers, in Free Radical Damage and its Control (Rice-Evans, C. A. and Burton, R. H., eds.), Elsevier Science, Amsterdam, pp. 113–130CrossRefGoogle Scholar
  7. 7.
    Marklund, S. L. (1990) Expression of extracellular superoxide dismutase by human cell lines. Biochem. J. 266, 213–219.PubMedGoogle Scholar
  8. 8.
    McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem 244, 6049–6055.PubMedGoogle Scholar
  9. 9.
    Liochev, S. and Fridovich, I. (1994). The role of O2 in the production of HO in vitro and in vivo. Free Rad. Biol. Med. 16, 29–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Yagi, K., Ishida, N., Komura, S., Ohishi, N., Kusai, M, and Kohno, M (1992) Generation of hydroxyl radical from linoleic acid hydroperoxide in the presence of epinephrine and iron. Biochem. Biophys. Res. Comm 183, 945–951.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubbo, H., Radi, R, Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269, 26,066–26,075PubMedGoogle Scholar
  12. 12.
    Spallholz, J. E. and Boylan, L. M. (1991). Glutathione peroxidase: The two selenium enzymes, in Peroxidases in Chemistry and Biology, (vol. 1) (Everse, J., Everse K. E., and Grisham M B., eds), CRC Press, Boca Raton, FL, pp. 259–291.Google Scholar
  13. 13.
    van Kuijk, F. J. G. M, Sevanian, A., Handelman, G. J., and Dratz, E. A. (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. TIBS 12, 31–34.Google Scholar
  14. 14.
    Thomas, J. P., Maiorino, M., Ursini, F., and Girotti, A. W. (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation; in situ reduction of phospholopid and cholesterol hydroperoxides. J. Biol. Chem. 265, 454–461.PubMedGoogle Scholar
  15. 15.
    Takahashi, K., Arissar, N., Whitin, J., and Cohen H. (1987) Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular one. Arch. Biochem. Biophys. 256, 677–686.PubMedCrossRefGoogle Scholar
  16. 16.
    Ursini, F., Maiorino, M., and Gregolin, C. (1986). Phospholipid hydroperoxide glutathione peroxidase Int. J Tiss. Reac. 8, 99–103Google Scholar
  17. 17.
    Thurnham, D I. (1990) Antioxidants and prooxidants in malnourished populations. Proc. Nutr. Soc. 49, 247–259.PubMedCrossRefGoogle Scholar
  18. 18.
    Mantle, T. J (1995) The glutathione S-transferase multigene family a paradigm for xenobiotic interactions Biochem. Soc Trans 23, 423–425PubMedGoogle Scholar
  19. 19.
    Leonarduzzi, G, Parola, M, Muzio, G, Garramone, A., Maggiora, M., Robino, B., Poli, G., Dianzani, M. V., and Canuto, R. A (1995) Hepatocellular metabolism of 4-hydroxy-2,3-nonenal is impaired in conditions of chronic cholestasis Biochem Biophys. Res Comm. 214, 669–675PubMedCrossRefGoogle Scholar
  20. 20.
    Singhal, S. S., Awasthi, S., Srivastava, S K., Zimniak, P, Ansari, H. H., and Awasthi, Y C (1995) Novel human ocular glutathione S-transferases with high affinity toward 4-hydroxynonenal. Invest. Ophthalmol Vis. Sci 36, 142–150.PubMedGoogle Scholar
  21. 21.
    Philbert, M. A, Beiswanger, C. M, Manson, M. M, Green, J A, Novak, R F, Primiano, T, Reuhl, K. R., and Lowndes, H E. (1995) Glutathione S-transferases and gamma-glutamyl transpeptidase in the rat nervous systems: a basis for differential susceptibility to neurotoxicants Neurotoxicology 16, 349–362.PubMedGoogle Scholar
  22. 22.
    Nijhoff, W. A., Grubben, M. J, Nagengast, F M, Jansen, J B, Verhagen, H, van Poppel, G., and Peters, W H (1995) Effects of consumption of Brussel sprouts on intestinal and lymphocytic glutathione S-transferase in humans. Carcinogenesis 16, 2125–2128PubMedCrossRefGoogle Scholar
  23. 23.
    Tsuchida, S. and Sate. K. (1992) Glutathione transferases and cancer. Crit Rev Biochem. Mol. Biol 27, 337–384.PubMedCrossRefGoogle Scholar
  24. 24.
    Ogawa, N., Hirose, T., Tsukamoto, M, Fukushima, K, Suwa, T., and Satoh, T (1995) GSH-dependent denitration of organic nitrate esters in rabbit hepatic and vascular cytosol. Res. Comm. Mol Pathol. Pharmacol. 88, 153–161Google Scholar
  25. 25.
    Hu, L. and Coleman, R F (1995) Monobromobimane as an affinity label of the xenobiotic binding site of rat glutathione S-trasnerase 3–3 J. Biol. Chem. 270, 21,875–21,883.PubMedCrossRefGoogle Scholar
  26. 26.
    Gastani, G. F., Kirkman, H. N, Mangerini, R., and Ferraris, A. M. (1994) Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes Blood 84, 325–330Google Scholar
  27. 27.
    Castano, A., Ayala, A, Rodriguez-Gomez, J A, de la Cruz, C P. Revilla, E, Cano, J., and Machado, A. (1995) Increase of dopmine turnover and tyrosine hydroxylase enzyme in hippocampus of rats fed on low selenium diet. Neurosci. Res. 42, 684–691CrossRefGoogle Scholar
  28. 28.
    Harmening, D. (ed.) (1992) Clinical Hematology and Fundamentals of Hemostesis (2nd ed.), F. A. Davis, Co., Philadelphia, PA, pp. 251, 540Google Scholar
  29. 29.
    Emerit, I. and Chance, B. (eds.) (1992) Free Radicals and Aging. Birkhauser Verlag, Basel and Boston, p. 437.Google Scholar
  30. 30.
    Yu, B. P. (ed) (1993) Free Radicals in Aging. CRC Press, Boca Raton, FL, p. 303Google Scholar
  31. 31.
    Ames, B., Shigenaga, M. K., and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging Proc Nat’l. Acad Sci USA 90, 7915–7922CrossRefGoogle Scholar
  32. 32.
    American Health Research Institute (1994) Antioxidants and Effects on Longevity. ABBE Publication Association, Washington, DC.Google Scholar
  33. 33.
    Armstrong, D. (ed) (1994) Free Radicals in Diagnostic Medicine. Plenum Press, New York, pp 1–464Google Scholar
  34. 34.
    Fairbanks, V. F. and Klee, G. G. (1987). Biochemical aspects of hematology, in, Fundamentals of Clinical Chemistry, (3rd ed.) (Tietz, N W., ed.), W R. Saunders Co., Philadelphia, PA, pp. 803–804.Google Scholar
  35. 35.
    Solberg, H E. (1987) Establishment and use of reference values in, Fundamentals of Clinical Chemistry (3rd ed.) (Tietz, N. W, ed.), W R. Saunders Co, Philadelphia, PA, pp. 197–212Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • C. E. Pippenger
    • 1
  • Richard W. Browne
    • 2
  • Donald Armstrong
    • 3
  1. 1.Cook Institute for Research and EducationButterworth Hospital and Michigan State University School of MedicineGrand Rapids
  2. 2.Department of Clinical Laboratory ScienceState University of New York at Buffalo
  3. 3.Department of Clinical Laboratory Science and PathologyState University of New York at Buffalo

Personalised recommendations