Skip to main content

Preparation of Cell-Free Extracts from Mycobacteria

  • Protocol
Book cover Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 101))

Abstract

Much work in the mycobacterial field has focused on the identification and characterization of antigenic proteins (1,2); many have now been identified and assigned a function; for example, the immunodommant 65kDa antigen of Mycobacterzum tuberculosis has been identified as a chaperonin (3) and the 28-kDa antigen of Mycobacterzum leprae was shown to be superoxide dismutase (4). In the beginnings of mycobactertal molecular biology, antigenic proteins were identified by screening M. leprae and M tuberculosis expression libraries in Escherichia coli (59) with mouse monoclonal antibodies (MAbs) (7,8) and polyclonal sera from rabbits (10,11) and patients (12,13). Although E. coli is still being used for the overexpression and purification of mycobacterial proteins (14), the use of nonpathogenic mycobacterta, such as Mycobacterium smegmatis as surrogate hosts may be preferable (15). For example, several mycobacterial proteins have been shown to undergo post-translational modification, such as glycosylation (15,16). Because glycosylation does not occur in E. coli, the study of such proteins in their native state requires the use of mycobacterial hosts. The preparation of cell-free extracts and protein purification from mycobacteria is a prerequisite for this kind of work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young, D. B, Kaufmann, S. H. E., Hermans, P.W M., and Thole, J E. R. (1992) Mycobacterial protein antigens: a compilationMol Microbrol 6, 133–145

    Article  CAS  Google Scholar 

  2. Thole, J. E. R., Wieles, B., Clark-Curtiss, J E., Ottenhoff, T H M.,and Rinke deWit, T F (1995) Immunological and functional characterization of Mycobacterium leprae protein antigens an overview. Mol Microbiol 18 791–800

    Article  PubMed  CAS  Google Scholar 

  3. Shinnick, T. M., Vodkin, M. H., and Williams, J. C (1988) The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein Infect Immun 56, 446–451.

    PubMed  CAS  Google Scholar 

  4. Thangaraj, H S, Lamb, F I, Davis, E O., Jenner, P J, Jeyakumar, L. H, and Colston, M J. (1990) Identification, sequencing and expression of Mycobacterium leprae superoxide dismutase, a major antigen Infect Immun 58, 1937–1942

    PubMed  CAS  Google Scholar 

  5. Clark-Curtiss, J. E, Jacobs, W R., Docherty, M. A, Ritchie, L. R., and Curtiss III, R. (1985) Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae J Bacteriol. 161, 1093–1102

    PubMed  CAS  Google Scholar 

  6. Thole, J E. R, Dauwerse, H G, Das, P. K, Groothius, D. G, Schouls, L M., and van Embden, J. D A. (1985) Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli Infect. Immun 50, 800–806.

    CAS  Google Scholar 

  7. Young, R. A., Mehra, V, Sweetser, D, Buchanan, T, Clark-Curtiss, J., Davis, R W., and Bloom, B. R. (1985) Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316, 450–452.

    Article  PubMed  CAS  Google Scholar 

  8. Young, R A, Bloom, B R, Grosskinsky, C M, Ivanyi, J, Thomas, D., and Davis, R. W. (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82, 2583–2587

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs, W. R, Docherty, M. A, Curtiss III, R., and Clark-Curtiss, J E (1986) Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Esherichia colo Kl2 Proc Natl Acad Sci USA 83, 1926–1930.

    Article  PubMed  CAS  Google Scholar 

  10. Collins, M E., Patki, A, Wall, S, Nolan, A, Goodger, J, Woodward, M. J, and Dale, J. W. (1990) Cloning and characterization of the gene for the 19kDa antigen of Mycobacterium bovis J. Gen Mtcrobiol 136, 1429–1436

    CAS  Google Scholar 

  11. Davidson, S K and George, G T. (1994) Detection and characterization of a lambda gt 11 recombinant clone of M leprae that expresses an antigenic determinant of a 64-kDa protein Int J Lepr 62, 237–244.

    CAS  Google Scholar 

  12. Young, D B., Kent, L., and Young, R. A. (1987) Sceening of a recombinant mycobacterial DNA library with polyclonal antiserum and molecular weight analysis of expressed antigens. Infect Immun 55, 1421–1425

    PubMed  CAS  Google Scholar 

  13. VegaLopez, F, Brooks, L. A., Dockrell, H. M., DeSmet, K. A. L., Thompson, J. K, Hussam, R., and Stoker, N G. (1993) Sequence and imununological characterization of a serme-rich antigen from Mycobacterium leprae. Infect. Immun 61, 2145–2153

    CAS  Google Scholar 

  14. El Zaatari, F. A. K, Naser, S. A., Engstrand, L, Hachem, C Y, and Graham, D Y. (1994) Identification and characterization of Mycobacterium paratuberculosis recombinant proteins expressed in E. coli. Curr Microbiol 29, 177–184

    Google Scholar 

  15. Garbe, T, Harris, D, Vordermeier, M, Lathriga, R., Ivanyi, J., and Young, D (1993) Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation. Infect Immun 61, 260–267

    PubMed  CAS  Google Scholar 

  16. Dobos, K. M., Khoo, K. H., Swiderek, K. M., Brennan, P. J., and Belisle, J. T. (1996) Definition of the full extent of glycosylation of the 45-kilodalton glyco-protein of Mycobacterium tuberculosis. J. Bacteriol. 178, 2498–2506

    PubMed  CAS  Google Scholar 

  17. Ramakrishnan, T. (1972) Intermediary metabolism of mycobacteria. Bacteriol. Rev. 36, 65–108.

    PubMed  CAS  Google Scholar 

  18. Ratledge, C. (1982) Nutrition, growth and metabolism, in The Biology of the Mycobacteria (Ratledge, C. and Stanford, J., eds.), Academic Press, New York and London, pp. 186–213.

    Google Scholar 

  19. Bloch, K. (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol 45, 1–84

    PubMed  CAS  Google Scholar 

  20. Barclay, R. and Wheeler, P R. (1989) Metabolism of mycobacterium in tissues, in The Biology of the Mycobacteria (Ratledge, C., Stanford, J., and Grange, J M., eds.), pp 37–106 Academic Press, New York and London

    Google Scholar 

  21. Bal, J. N., Pal, R. P., Murthy, P S, and Venkitasubramanian, T. A. (1975) Fructose diphosphate aldolase from Mycobacterium smegmatis functional similarities with rabbit muscle aldolase Arch Biochem Biophys 168, 230–234.

    Article  Google Scholar 

  22. Henrikson, K. P. and Allen, S. H. G. (1979) Purification and subunit structure of pro-pionyl-Co A carboxylase of Mycobacterium smegmatis J. Biol. Chem. 254, 5888–5891

    PubMed  CAS  Google Scholar 

  23. Serres, M. H and Ensign, J C (1996) Endogenous ADP-ribosylation of proteins in Mycobacterium smegmatis J. Bacteriol. 178, 6074–6077.

    PubMed  CAS  Google Scholar 

  24. Cooper, J. B., McIntyre, K., Badasso, M. O., Wood, S. P., Zhang, Y., Garbe, T. R., and Young, D. (1995) X-ray structure analysis of the Iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstrom resolution reveals novel dimer-dimer interactions. J. Mol. Biol. 246, 531–544

    Article  PubMed  CAS  Google Scholar 

  25. Mahenthiralingam, E., Draper, P., Davis, E. O., and Colston, M. J. (1993) Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis J. Gen Microbiol. 139, 575–583

    PubMed  CAS  Google Scholar 

  26. Rastogi, N. and David, H. L. (1981) Ultractrustural and chemical studies on wall-deficient forms, spheroplasts and membrane vesicles from Mycobacterium aurum. J Gen Microbiol 124, 71–79.

    PubMed  CAS  Google Scholar 

  27. Rastogi, N., Levy-Frebault, V. V., and David, H. L. (1983) Spheroplast formation from nine rapidly growing mycobacteria. Curr Microbiol. 9, 201–204.

    Article  Google Scholar 

  28. Sadhu, C. and Gopinathan, K. P. (1982) A rapid procedure for the isolation of spheroplasts from Mycobacterium smegmatis. FEMS Microbiol Lett. 15, 19–22.

    Article  Google Scholar 

  29. Brodie, A. F., Kalra, V. K, Lee, S. H., and Cohen, N. S. (1979) Properties of energy-transducing systems in different types of membrane preparations from Mycobacterium phlet. preparation, resolution and reconstruction Methods Enzymol. 55, 175–200

    Article  PubMed  CAS  Google Scholar 

  30. Blom-Potar, M. C., David, H. L., and Rastogi, N. (1989) Isoenzymes as tools to discriminate various subdivisions in the Mycobacterium fortuitum complex. Acta Leprol 7, S39–S43

    Google Scholar 

  31. Parra, C. A., Londono, L. P., Delportillo, P., and Patarroyo, M. E. (1991) Isolation, characterization, and molecular cloning of a specific Mycobacterium tuberculosis antigen gene: identification of a species-specific sequence. Infect Immun 59, 3411–3417.

    PubMed  CAS  Google Scholar 

  32. Armoa, G. R. G., Rouse, D. A., Nair, J., Mackall, J. C., and Morris, S. L. (1995) A highly immunogenic putative Mycobacterium kansasu lipoprotein. Microbiology 141, 2705–2712.

    Article  PubMed  CAS  Google Scholar 

  33. Deshpande, R. G., Khan, M. B., Bhat, D. A., and Navalkar, R. G. (1994) Purification and partial characterisation of a novel 66-kDa seroreactive protein of Mycobacterium tuberculosis H37Rv. J Med Microbiol 41, 173–178

    Article  PubMed  CAS  Google Scholar 

  34. Cameron, R M, Stevenson, K, Inglis, N F, Klausen, J, and Sharp, J M (1994) Identification and characterization of a putative serine protease expressed in vivo by Mycobacterium avium subsp. paratuberculosis Microbiology 140, 1977–1982

    Article  PubMed  CAS  Google Scholar 

  35. Lathigra, R, Zhang, Y, Hill, M., Garcia, M J, Jackett, P S, and Ivanyi, J (1996) Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis. Res. Microbiol. 147, 237–249.

    Article  PubMed  CAS  Google Scholar 

  36. Young, D. B and Garbe, T. R. (1991) Lipoprotein antigens of Mycobacterium tuberculosis. Res Microbiol 142, 55–65

    Article  PubMed  CAS  Google Scholar 

  37. Rastogi, N., Labrousse, V, and Barreau, C (1992) A rapid microbead method for breaking pathogenic mycobacteria-application in SDS-PAGE and Western blot analysis Curr Microbiol 24, 311–317

    Article  CAS  Google Scholar 

  38. Weil, A., Plikaytis, B. B., Butler, W. R., Woodley, C. L., and Shinnick, T. M. (1996) The mtp40 gene is not present in all strains of Mycobacterium tuberculosis J Clin Microbiol 34, 2309–2311

    PubMed  CAS  Google Scholar 

  39. Pierard, A. and Goldman, D. S. (1963) Enzyme systems in the mycobacteria Fatty acid synthesis in cell-free extracts of Mycobacterium tuberculosis. Arch Biochem Biophys 100, 56–65.

    Article  PubMed  CAS  Google Scholar 

  40. Brodie, A. F. and Gray, C. T. (1957) Bacterial particles in oxidative phosphorylation Science 125, 534–535

    Article  PubMed  CAS  Google Scholar 

  41. Mart, T., Kosaka, K., and Domae, K. (1971) Terminal electron transport system of M lepraemurium. Int J Lepr 39, 813–828

    Google Scholar 

  42. Hirschfield, G. R., McNeil, M., and Brennan, P. J. (1990) Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacterial 172, 1005–1013

    CAS  Google Scholar 

  43. Lacave, C., Laneelle, M. A., and Laneelle, G. (1990) Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim. Biophys Acta 1042, 315–323

    PubMed  CAS  Google Scholar 

  44. Wheeler, P. R., Besra, G. S., Minnikin, D. E., and Ratledge, C. (1993) Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Biochim Biophys Acta 1167, 182–188.

    PubMed  CAS  Google Scholar 

  45. Kittelberger, R., Hansen, M. F, Hilbink, F., DeLisle, G. W., and Cloeckaert, A. (1995) Selective extraction of bacterial macromolecules by temperature-induced phase separation in Triton X-114 solution. J Microb Methods 24, 81–92

    Article  CAS  Google Scholar 

  46. Kulkarni, V. M. and Seydel, J. K. (1983) Inhibitory activity and mode of action of diaminodiphenylsulfone in cell-free folate-synthesising systems prepared from Mycobacterium lufu and Mycobacterium leprae. a comparison. Chemotherapy 29, 58–67.

    Article  PubMed  CAS  Google Scholar 

  47. Seydel, J. K., Rosenfeld, M., Sathish, M., Wiese, M., Schaper, K. J., Hachtel, G., Hailer, R., Kansy, M., and Dhople, A. M. (1986) Strategies in the development of new drugs and drug combinations against leprosy, demonstrated on the example of folate and gyrase inhibitors Lepr Rev 57, 235–253.

    PubMed  Google Scholar 

  48. Wheeler, P. R. (1984) Variation of superoxide dismutase levels in extracts of Mycobacterium leprae from armadillo liver. Int. J Lepr. 52, 49–54.

    CAS  Google Scholar 

  49. Wheeler, P R (1983) Catabolic pathways for glucose, glycerol and 6-phospho-gluconate in Mycobacterium leprae grown in armadillo tissues J Gen Microbiol. 129, 1481–1495

    PubMed  CAS  Google Scholar 

  50. Wheeler, P R and Gregory, D (1980) Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J Gen. Microbiol 121, 457–464

    PubMed  CAS  Google Scholar 

  51. Fossati, G, Lucietto, P, Giuliani, P., Coates, A R, Harding, S, Colfen, H, Legname, G., Chan, E, Zaliani, A, and Mascagni, P. (1995) Mycobacterium tuberculosis chaperonin 10 forms stable tetrameric and heptameric structures Implications for its diverse biological activities J Biol. Chem 270, 26,159–26,167

    Article  PubMed  CAS  Google Scholar 

  52. Kretzer, A., Frunzke, K., and Andreesen, J. R. (1993) Catabolism of isonicotinate by Mycobacterium sp INAl Extended description of the pathway and purification of the molybdoenzyme isonicotinate dehydrogenase J Gen. Microbiol 139, 2763–2772.

    PubMed  CAS  Google Scholar 

  53. Kikuchi, S and Kusaka, T (1984) Purification of NADPH-dependant enoyl-CoA reductase involved in the malonyl-CoA dependant fatty acid elongation system of Mycobacterium smegmatis J Biochem Tokyo 96, 841–848

    PubMed  CAS  Google Scholar 

  54. Parish, T, Mahenthtralingam, E., Draper, P., Davis, E. O, and Colston, M. J. (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276

    Article  PubMed  CAS  Google Scholar 

  55. Dover, L G and Ratledge, C. (1996) Identification of a 29 kDa protein in the envelope of Mycobacterium smegmatis as a putative ferri-exochelin receptor. Microbiology 142, 1521–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Parish, T., Wheeler, P.R. (1998). Preparation of Cell-Free Extracts from Mycobacteria. In: Parish, T., Stoker, N.G. (eds) Mycobacteria Protocols. Methods in Molecular Biology™, vol 101. Humana Press. https://doi.org/10.1385/0-89603-471-2:77

Download citation

  • DOI: https://doi.org/10.1385/0-89603-471-2:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-471-6

  • Online ISBN: 978-1-59259-576-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics