Advertisement

Preparation of Cell-Free Extracts from Mycobacteria

  • Tanya Parish
  • Paul R. Wheeler
Part of the Methods in Molecular Biology™ book series (MIMB, volume 101)

Abstract

Much work in the mycobacterial field has focused on the identification and characterization of antigenic proteins (1,2); many have now been identified and assigned a function; for example, the immunodommant 65kDa antigen of Mycobacterzum tuberculosis has been identified as a chaperonin (3) and the 28-kDa antigen of Mycobacterzum leprae was shown to be superoxide dismutase (4). In the beginnings of mycobactertal molecular biology, antigenic proteins were identified by screening M. leprae and M tuberculosis expression libraries in Escherichia coli (5, 6, 7, 8, 9) with mouse monoclonal antibodies (MAbs) (7,8) and polyclonal sera from rabbits (10,11) and patients (12,13). Although E. coli is still being used for the overexpression and purification of mycobacterial proteins (14), the use of nonpathogenic mycobacterta, such as Mycobacterium smegmatis as surrogate hosts may be preferable (15). For example, several mycobacterial proteins have been shown to undergo post-translational modification, such as glycosylation (15,16). Because glycosylation does not occur in E. coli, the study of such proteins in their native state requires the use of mycobacterial hosts. The preparation of cell-free extracts and protein purification from mycobacteria is a prerequisite for this kind of work.

Keywords

Cell Disruption Antigenic Protein Mycobacterium Smegmatis Polyclonal Seron Insoluble Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Young, D. B, Kaufmann, S. H. E., Hermans, P.W M., and Thole, J E. R. (1992) Mycobacterial protein antigens: a compilationMol Microbrol 6, 133–145CrossRefGoogle Scholar
  2. 2.
    Thole, J. E. R., Wieles, B., Clark-Curtiss, J E., Ottenhoff, T H M.,and Rinke deWit, T F (1995) Immunological and functional characterization of Mycobacterium leprae protein antigens an overview. Mol Microbiol 18 791–800PubMedCrossRefGoogle Scholar
  3. 3.
    Shinnick, T. M., Vodkin, M. H., and Williams, J. C (1988) The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein Infect Immun 56, 446–451.PubMedGoogle Scholar
  4. 4.
    Thangaraj, H S, Lamb, F I, Davis, E O., Jenner, P J, Jeyakumar, L. H, and Colston, M J. (1990) Identification, sequencing and expression of Mycobacterium leprae superoxide dismutase, a major antigen Infect Immun 58, 1937–1942PubMedGoogle Scholar
  5. 5.
    Clark-Curtiss, J. E, Jacobs, W R., Docherty, M. A, Ritchie, L. R., and Curtiss III, R. (1985) Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae J Bacteriol. 161, 1093–1102PubMedGoogle Scholar
  6. 6.
    Thole, J E. R, Dauwerse, H G, Das, P. K, Groothius, D. G, Schouls, L M., and van Embden, J. D A. (1985) Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli Infect. Immun 50, 800–806.Google Scholar
  7. 7.
    Young, R. A., Mehra, V, Sweetser, D, Buchanan, T, Clark-Curtiss, J., Davis, R W., and Bloom, B. R. (1985) Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316, 450–452.PubMedCrossRefGoogle Scholar
  8. 8.
    Young, R A, Bloom, B R, Grosskinsky, C M, Ivanyi, J, Thomas, D., and Davis, R. W. (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82, 2583–2587PubMedCrossRefGoogle Scholar
  9. 9.
    Jacobs, W. R, Docherty, M. A, Curtiss III, R., and Clark-Curtiss, J E (1986) Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Esherichia colo Kl2 Proc Natl Acad Sci USA 83, 1926–1930.PubMedCrossRefGoogle Scholar
  10. 10.
    Collins, M E., Patki, A, Wall, S, Nolan, A, Goodger, J, Woodward, M. J, and Dale, J. W. (1990) Cloning and characterization of the gene for the 19kDa antigen of Mycobacterium bovis J. Gen Mtcrobiol 136, 1429–1436Google Scholar
  11. 11.
    Davidson, S K and George, G T. (1994) Detection and characterization of a lambda gt 11 recombinant clone of M leprae that expresses an antigenic determinant of a 64-kDa protein Int J Lepr 62, 237–244.Google Scholar
  12. 12.
    Young, D B., Kent, L., and Young, R. A. (1987) Sceening of a recombinant mycobacterial DNA library with polyclonal antiserum and molecular weight analysis of expressed antigens. Infect Immun 55, 1421–1425PubMedGoogle Scholar
  13. 13.
    VegaLopez, F, Brooks, L. A., Dockrell, H. M., DeSmet, K. A. L., Thompson, J. K, Hussam, R., and Stoker, N G. (1993) Sequence and imununological characterization of a serme-rich antigen from Mycobacterium leprae. Infect. Immun 61, 2145–2153Google Scholar
  14. 14.
    El Zaatari, F. A. K, Naser, S. A., Engstrand, L, Hachem, C Y, and Graham, D Y. (1994) Identification and characterization of Mycobacterium paratuberculosis recombinant proteins expressed in E. coli. Curr Microbiol 29, 177–184Google Scholar
  15. 15.
    Garbe, T, Harris, D, Vordermeier, M, Lathriga, R., Ivanyi, J., and Young, D (1993) Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation. Infect Immun 61, 260–267PubMedGoogle Scholar
  16. 16.
    Dobos, K. M., Khoo, K. H., Swiderek, K. M., Brennan, P. J., and Belisle, J. T. (1996) Definition of the full extent of glycosylation of the 45-kilodalton glyco-protein of Mycobacterium tuberculosis. J. Bacteriol. 178, 2498–2506PubMedGoogle Scholar
  17. 17.
    Ramakrishnan, T. (1972) Intermediary metabolism of mycobacteria. Bacteriol. Rev. 36, 65–108.PubMedGoogle Scholar
  18. 18.
    Ratledge, C. (1982) Nutrition, growth and metabolism, in The Biology of the Mycobacteria (Ratledge, C. and Stanford, J., eds.), Academic Press, New York and London, pp. 186–213.Google Scholar
  19. 19.
    Bloch, K. (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol 45, 1–84PubMedGoogle Scholar
  20. 20.
    Barclay, R. and Wheeler, P R. (1989) Metabolism of mycobacterium in tissues, in The Biology of the Mycobacteria (Ratledge, C., Stanford, J., and Grange, J M., eds.), pp 37–106 Academic Press, New York and LondonGoogle Scholar
  21. 21.
    Bal, J. N., Pal, R. P., Murthy, P S, and Venkitasubramanian, T. A. (1975) Fructose diphosphate aldolase from Mycobacterium smegmatis functional similarities with rabbit muscle aldolase Arch Biochem Biophys 168, 230–234.CrossRefGoogle Scholar
  22. 22.
    Henrikson, K. P. and Allen, S. H. G. (1979) Purification and subunit structure of pro-pionyl-Co A carboxylase of Mycobacterium smegmatis J. Biol. Chem. 254, 5888–5891PubMedGoogle Scholar
  23. 23.
    Serres, M. H and Ensign, J C (1996) Endogenous ADP-ribosylation of proteins in Mycobacterium smegmatis J. Bacteriol. 178, 6074–6077.PubMedGoogle Scholar
  24. 24.
    Cooper, J. B., McIntyre, K., Badasso, M. O., Wood, S. P., Zhang, Y., Garbe, T. R., and Young, D. (1995) X-ray structure analysis of the Iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstrom resolution reveals novel dimer-dimer interactions. J. Mol. Biol. 246, 531–544PubMedCrossRefGoogle Scholar
  25. 25.
    Mahenthiralingam, E., Draper, P., Davis, E. O., and Colston, M. J. (1993) Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis J. Gen Microbiol. 139, 575–583PubMedGoogle Scholar
  26. 26.
    Rastogi, N. and David, H. L. (1981) Ultractrustural and chemical studies on wall-deficient forms, spheroplasts and membrane vesicles from Mycobacterium aurum. J Gen Microbiol 124, 71–79.PubMedGoogle Scholar
  27. 27.
    Rastogi, N., Levy-Frebault, V. V., and David, H. L. (1983) Spheroplast formation from nine rapidly growing mycobacteria. Curr Microbiol. 9, 201–204.CrossRefGoogle Scholar
  28. 28.
    Sadhu, C. and Gopinathan, K. P. (1982) A rapid procedure for the isolation of spheroplasts from Mycobacterium smegmatis. FEMS Microbiol Lett. 15, 19–22.CrossRefGoogle Scholar
  29. 29.
    Brodie, A. F., Kalra, V. K, Lee, S. H., and Cohen, N. S. (1979) Properties of energy-transducing systems in different types of membrane preparations from Mycobacterium phlet. preparation, resolution and reconstruction Methods Enzymol. 55, 175–200PubMedCrossRefGoogle Scholar
  30. 30.
    Blom-Potar, M. C., David, H. L., and Rastogi, N. (1989) Isoenzymes as tools to discriminate various subdivisions in the Mycobacterium fortuitum complex. Acta Leprol 7, S39–S43Google Scholar
  31. 31.
    Parra, C. A., Londono, L. P., Delportillo, P., and Patarroyo, M. E. (1991) Isolation, characterization, and molecular cloning of a specific Mycobacterium tuberculosis antigen gene: identification of a species-specific sequence. Infect Immun 59, 3411–3417.PubMedGoogle Scholar
  32. 32.
    Armoa, G. R. G., Rouse, D. A., Nair, J., Mackall, J. C., and Morris, S. L. (1995) A highly immunogenic putative Mycobacterium kansasu lipoprotein. Microbiology 141, 2705–2712.PubMedCrossRefGoogle Scholar
  33. 33.
    Deshpande, R. G., Khan, M. B., Bhat, D. A., and Navalkar, R. G. (1994) Purification and partial characterisation of a novel 66-kDa seroreactive protein of Mycobacterium tuberculosis H37Rv. J Med Microbiol 41, 173–178PubMedCrossRefGoogle Scholar
  34. 34.
    Cameron, R M, Stevenson, K, Inglis, N F, Klausen, J, and Sharp, J M (1994) Identification and characterization of a putative serine protease expressed in vivo by Mycobacterium avium subsp. paratuberculosis Microbiology 140, 1977–1982PubMedCrossRefGoogle Scholar
  35. 35.
    Lathigra, R, Zhang, Y, Hill, M., Garcia, M J, Jackett, P S, and Ivanyi, J (1996) Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis. Res. Microbiol. 147, 237–249.PubMedCrossRefGoogle Scholar
  36. 36.
    Young, D. B and Garbe, T. R. (1991) Lipoprotein antigens of Mycobacterium tuberculosis. Res Microbiol 142, 55–65PubMedCrossRefGoogle Scholar
  37. 37.
    Rastogi, N., Labrousse, V, and Barreau, C (1992) A rapid microbead method for breaking pathogenic mycobacteria-application in SDS-PAGE and Western blot analysis Curr Microbiol 24, 311–317CrossRefGoogle Scholar
  38. 38.
    Weil, A., Plikaytis, B. B., Butler, W. R., Woodley, C. L., and Shinnick, T. M. (1996) The mtp40 gene is not present in all strains of Mycobacterium tuberculosis J Clin Microbiol 34, 2309–2311PubMedGoogle Scholar
  39. 39.
    Pierard, A. and Goldman, D. S. (1963) Enzyme systems in the mycobacteria Fatty acid synthesis in cell-free extracts of Mycobacterium tuberculosis. Arch Biochem Biophys 100, 56–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Brodie, A. F. and Gray, C. T. (1957) Bacterial particles in oxidative phosphorylation Science 125, 534–535PubMedCrossRefGoogle Scholar
  41. 41.
    Mart, T., Kosaka, K., and Domae, K. (1971) Terminal electron transport system of M lepraemurium. Int J Lepr 39, 813–828Google Scholar
  42. 42.
    Hirschfield, G. R., McNeil, M., and Brennan, P. J. (1990) Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacterial 172, 1005–1013Google Scholar
  43. 43.
    Lacave, C., Laneelle, M. A., and Laneelle, G. (1990) Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim. Biophys Acta 1042, 315–323PubMedGoogle Scholar
  44. 44.
    Wheeler, P. R., Besra, G. S., Minnikin, D. E., and Ratledge, C. (1993) Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Biochim Biophys Acta 1167, 182–188.PubMedGoogle Scholar
  45. 45.
    Kittelberger, R., Hansen, M. F, Hilbink, F., DeLisle, G. W., and Cloeckaert, A. (1995) Selective extraction of bacterial macromolecules by temperature-induced phase separation in Triton X-114 solution. J Microb Methods 24, 81–92CrossRefGoogle Scholar
  46. 46.
    Kulkarni, V. M. and Seydel, J. K. (1983) Inhibitory activity and mode of action of diaminodiphenylsulfone in cell-free folate-synthesising systems prepared from Mycobacterium lufu and Mycobacterium leprae. a comparison. Chemotherapy 29, 58–67.PubMedCrossRefGoogle Scholar
  47. 47.
    Seydel, J. K., Rosenfeld, M., Sathish, M., Wiese, M., Schaper, K. J., Hachtel, G., Hailer, R., Kansy, M., and Dhople, A. M. (1986) Strategies in the development of new drugs and drug combinations against leprosy, demonstrated on the example of folate and gyrase inhibitors Lepr Rev 57, 235–253.PubMedGoogle Scholar
  48. 48.
    Wheeler, P. R. (1984) Variation of superoxide dismutase levels in extracts of Mycobacterium leprae from armadillo liver. Int. J Lepr. 52, 49–54.Google Scholar
  49. 49.
    Wheeler, P R (1983) Catabolic pathways for glucose, glycerol and 6-phospho-gluconate in Mycobacterium leprae grown in armadillo tissues J Gen Microbiol. 129, 1481–1495PubMedGoogle Scholar
  50. 50.
    Wheeler, P R and Gregory, D (1980) Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J Gen. Microbiol 121, 457–464PubMedGoogle Scholar
  51. 51.
    Fossati, G, Lucietto, P, Giuliani, P., Coates, A R, Harding, S, Colfen, H, Legname, G., Chan, E, Zaliani, A, and Mascagni, P. (1995) Mycobacterium tuberculosis chaperonin 10 forms stable tetrameric and heptameric structures Implications for its diverse biological activities J Biol. Chem 270, 26,159–26,167PubMedCrossRefGoogle Scholar
  52. 52.
    Kretzer, A., Frunzke, K., and Andreesen, J. R. (1993) Catabolism of isonicotinate by Mycobacterium sp INAl Extended description of the pathway and purification of the molybdoenzyme isonicotinate dehydrogenase J Gen. Microbiol 139, 2763–2772.PubMedGoogle Scholar
  53. 53.
    Kikuchi, S and Kusaka, T (1984) Purification of NADPH-dependant enoyl-CoA reductase involved in the malonyl-CoA dependant fatty acid elongation system of Mycobacterium smegmatis J Biochem Tokyo 96, 841–848PubMedGoogle Scholar
  54. 54.
    Parish, T, Mahenthtralingam, E., Draper, P., Davis, E. O, and Colston, M. J. (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276PubMedCrossRefGoogle Scholar
  55. 55.
    Dover, L G and Ratledge, C. (1996) Identification of a 29 kDa protein in the envelope of Mycobacterium smegmatis as a putative ferri-exochelin receptor. Microbiology 142, 1521–1530PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Tanya Parish
  • Paul R. Wheeler

There are no affiliations available

Personalised recommendations