Skip to main content

Leucine Incorporation and Thymidine Incorporation

  • Protocol
Book cover Polyamine Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 79))

Abstract

Although their precise role is poorly understood, polyamines appear to be important in cell growth. This is probably through their ready interaction with cell membrane components, nucleic acids, and proteins. One consequence of these interactions is that polyamines are able to modulate cell proliferation (1). Moreover, regulation of polyamine levels within cells appears to be closely related to cell proliferation (2), so assessment of polyamine levels and of the activity of ornithine decarboxylase activity, a key enzyme involved in polyamine synthesis, has been used in tissue extracts as an index of cell growth (3). A corollary of this association between proliferation and polyamine metabolism is that basic techniques for assessing cell growth and proliferation of cells are valuable tools in the field of polyamine research (4). In this chapter two methods of growth assessment that measure incorporation of radiolabeled precursors into cellular macromolecules will be described. These techniques employ the principle that cells will incorporate radiolabeled precursors of DNA and protein into newly synthesized macromolecules and the amount of incorporation will reflect both the synthetic activity of each cell in culture and also the number of cells. In many situations the amount of radionuclide incorporated can be used as an index of cell proliferation, although this is not always the case, as discussed in Subheading 3.6. Two of the most frequently used radiolabeled precursors are thymidine, which becomes incorporated into DNA and is generally labeled with tritium (3H), and leucine, which is incorporated into most eukaryotic protein molecules. Leucine can be labeled with either tritium or carbon-14 (14C) and, although in this discussion [3H]-labeled leucine will be considered, the same principles apply to [14C]-leucine, apart from requiring different programming of the scintillation counter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heby, O. (1981) Roles of polyamines in the control of cell proliferation. Differentiation 19, 1–20.

    Article  PubMed  CAS  Google Scholar 

  2. Morrison, R. F. and Seidel, E. R. (1995) Vascular endothelial cell proliferation: regulation of cellular polyamines. Cardiovasc. Res. 29, 841–847.

    PubMed  CAS  Google Scholar 

  3. Abrahamson, M. S. and Morris, D. R. (1990) Cell type specific mechanisms of regulating expression of the ornithine decarboxylase gene after growth stimulation. Mol. Cell. Biol. 10, 5525–5528.

    Google Scholar 

  4. Pegg, A. E. and McCann, P. P. (1982) Polyamine metabolism and function. Am. J. Physiol. 243 C212–C221.

    PubMed  CAS  Google Scholar 

  5. Everhart, L. P., Hausohka, P. V., and Prescott, D. M. (1973) Measurement of growth rates and incorporation of radioactive precursors into macromolecules of cultured cells. Methods Cell Biol. 7, 329–347.

    Article  PubMed  CAS  Google Scholar 

  6. Ball, C. R., Van den Berg, H. W., and Poynter, R. W. (1973) The measurement of radioactive precursor incorporation into small monolayer cultures. Methods Cell Biol. 7, 349–360.

    Article  PubMed  CAS  Google Scholar 

  7. Uitto, J., Murray, L. W., Blumberg, B., and Shamban, A. (1986) Biochemistry of collagen in diseases (review). Ann. Intern. Med. 105, 740–756.

    PubMed  CAS  Google Scholar 

  8. Dover, R. (1991) Basic methods for assessing cellular proliferation, in Assessment of Cell Proliferation in Clinical Practice (Hall, P. A., Levrson, D. A., and Wright, N. A., eds.), Springer-Verlag, London, pp. 63–81.

    Google Scholar 

  9. Beck, H. P. (1981) Radiotoxicity of incorporated [3H]thymidine as studied by autoradiography and flow cytometry. Cell Tissue Kinet. 14, 163–177.

    PubMed  CAS  Google Scholar 

  10. Trosko, J. E. and Yager, J. D. (1974) A sensitive method to measure physical and chemical carcinogen induced unscheduled DNA synthesis in rapidly dividing eukaryotic cells. Exp. Cell Res. 88, 47–55.

    Article  PubMed  CAS  Google Scholar 

  11. Rew, D. A. and Wilson, G. D. (1991) Advances in cell kinetics. Br. Med. J. 303, 532–537.

    Article  CAS  Google Scholar 

  12. Gratzner, H. G. (1982) Monoclonal antibody to 5-bromo and 5-iodo-deoxy-uridine, a new reagent for the detection of DNA replication. Science (Wash.) 218, 474, 475.

    Article  CAS  Google Scholar 

  13. Gerecke, D. and Gross, R. (1975) Reutilisation of DNA catabolites in granulocytopoests. Blut. 31, 41–48.

    Article  Google Scholar 

  14. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olsen, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  15. Mossman, T. (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55–63.

    Article  Google Scholar 

  16. Maurer, H. R. (1981) Potential pitfalls of 3H-thymidine techniques to measure cell proliferation. Cell Tissue Kinetics 14, 111–120.

    CAS  Google Scholar 

  17. Schneider, W. C. and Greco, A. E. (1971) Incorporation of pyrimidine deoxyribo-nucleotides into liver lipids and other components. Biochim. Biophys. Acta 228, 610–626.

    PubMed  CAS  Google Scholar 

  18. Ooi, S. O., Sim, K. Y., Chung, M. C., and Kon, O. L. (1993) Selective antiproliferative effects of thymidine. Experientia 49, 576–581.

    Article  PubMed  CAS  Google Scholar 

  19. Boulton, R. A. and Hodgson, H. F. (1995) Assessing cell proliferation a methodological review. Clin. Sci. 88, 119–130.

    PubMed  CAS  Google Scholar 

  20. Simon, J. S., Baum, J. S., Moore, S. A., and Kasson, B. G. (1995) Arginine vaso-pressin stimulates protein synthesis but not proliferation of cultured vascular endothelial cells. J. Cardiovasc. Pharmacol. 25, 368–375.

    Article  PubMed  CAS  Google Scholar 

  21. Gospodarowicz, D. and Moran, J. S. (1975) Determination of 3H incorporation into DNA in vitro. Methods Cell Biol. 3, 320–329.

    Google Scholar 

  22. Stubblefield, E. (1968) Synchronisation methods for mammalian cell cultures. Methods Cell Physiol. 3, 25–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Denton, C.P. (1998). Leucine Incorporation and Thymidine Incorporation. In: Morgan, D.M.L. (eds) Polyamine Protocols. Methods in Molecular Biology™, vol 79. Humana Press. https://doi.org/10.1385/0-89603-448-8:169

Download citation

  • DOI: https://doi.org/10.1385/0-89603-448-8:169

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-448-8

  • Online ISBN: 978-1-59259-565-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics